Đại số và Giải tích 11 cơ bản - Chương 1 - Bài 1. Hàm số lượng giác

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Bài 1 trang 17 sgk giải tích 11. Hãy xác định các giá trị của \(x\) trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) để hàm số \(y = tanx\) ;

    a) Nhận giá trị bằng \(0\) ;

    b) Nhận giá trị bằng \(1\) ;

    c) Nhận giá trị dương ;

    d) Nhận giá trị âm.

    Đáp án :

    a) trục hoành cắt đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) tại ba điểm có hoành độ - π ; 0 ; π. Do đó trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) chỉ có ba giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị bằng \(0\), đó là \(x = - π; x = 0 ; x = π\).

    b) Đường thẳng \(y = 1\) cắt đoạn đồ thị \(y = tanx\) (ứng với \(x\in\)\(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) tại ba điểm có hoành độ \({\pi \over 4};{\pi \over 4} \pm \pi \) . Do đó trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) chỉ có ba giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị bằng \(1\), đó là \(x = - {{3\pi } \over 4};\,\,x = {\pi \over 4};\,\,x = {{5\pi } \over 4}\).

    c) Phần phía trên trục hoành của đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) gồm các điểm của đồ thị có hoành độ truộc một trong các khoảng \(\left( { - \pi ; - {\pi \over 2}} \right)\); \(\left( {0;{\pi \over 2}} \right)\); \(\left( {\pi ;{{3\pi } \over 2}} \right)\). Vậy trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) , các giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị dương là \(x \in \left( { - \pi ; - {\pi \over 2}} \right) \cup \left( {0;{\pi \over 2}} \right) \cup \left( {\pi ;{{3\pi } \over 2}} \right)\).

    d) Phần phía dưới trục hoành của đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng \(\left( { - {\pi \over 2};0} \right),\left( {{\pi \over 2};\pi } \right)\). Vậy trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) , các giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị âm là \(x \in \left( { - {\pi \over 2};0} \right),\left( {{\pi \over 2};\pi } \right)\)




    Bài 2 trang 17 sgk giải tích 11. Tìm tập xác định của các hàm số:

    a) \(y=\frac{1+cosx}{sinx}\) ;

    b) \(y=\sqrt{\frac{1+cosx}{1-cosx}}\) ;

    c) \(y=tan(x-\frac{\pi }{3})\) ;

    d) \( y=cot(x+\frac{\pi }{6})\) .

    Giải:

    Câu a:

    Hàm số \(y=\frac{1+cosx}{sinx}\) xác định khi \(sinx\neq 0\Leftrightarrow x \neq k \pi,k\in \mathbb{Z}\)

    Vậy tập xác định của hàm số là \(D=\mathbb{R} \setminus \left \{ k \pi,k\in \mathbb{Z} \right \}\)

    Câu b:

    Hàm số \(y=\sqrt{\frac{1+cosx}{1-cosx}}\) xác định khi \(\left\{\begin{matrix} \frac{1+cosx}{1-cosx}\geq 0\\ \\ 1-cosx\neq 0 \end{matrix}\right.\)

    \(\Leftrightarrow 1-cosx> 0(do \ \ 1+cosx\geq 0)\)

    \(\Leftrightarrow cosx\neq 1 \Leftrightarrow x \neq k2 \pi,k\in \mathbb{Z}\)

    Vậy tập xác định của hàm số là \(D=\mathbb{R} \setminus \left \{ k 2 \pi,k\in \mathbb{Z} \right \}\)

    Câu c:

    Hàm số xác định khi \(cos\left ( x-\frac{\pi }{3} \right )\neq 0\) xác định khi:\(x-\frac{\pi }{3}\neq \frac{\pi }{2}+k\pi \Leftrightarrow x\neq \frac{5\pi }{6}+k\pi (k\in Z)\)

    Vậy tập xác định của hàm số \(D=\mathbb{R} \setminus \left \{ \frac{5\pi }{6}+k \pi ,k\in Z \right \}\)

    Câu d:

    Hàm số xác định khi \(sin \left ( x+\frac{\pi }{6} \right )\neq 0\) xác định khi \(x+\frac{\pi }{6}\neq k\pi \Leftrightarrow x\neq -\frac{\pi }{6}+k\pi,k\in Z\)

    Vậy tập xác định của hàm số là \(D=\mathbb{R} \setminus \left \{ \frac{\pi }{6}+k \pi ,k\in Z \right \}\)




    Bài 2 trang 17 sgk giải tích 11. Tìm tập xác định của các hàm số:

    a) \(y=\frac{1+cosx}{sinx}\) ;

    b) \(y=\sqrt{\frac{1+cosx}{1-cosx}}\) ;

    c) \(y=tan(x-\frac{\pi }{3})\) ;

    d) \( y=cot(x+\frac{\pi }{6})\) .

    Giải:

    Câu a:

    Hàm số \(y=\frac{1+cosx}{sinx}\) xác định khi \(sinx\neq 0\Leftrightarrow x \neq k \pi,k\in \mathbb{Z}\)

    Vậy tập xác định của hàm số là \(D=\mathbb{R} \setminus \left \{ k \pi,k\in \mathbb{Z} \right \}\)

    Câu b:

    Hàm số \(y=\sqrt{\frac{1+cosx}{1-cosx}}\) xác định khi \(\left\{\begin{matrix} \frac{1+cosx}{1-cosx}\geq 0\\ \\ 1-cosx\neq 0 \end{matrix}\right.\)

    \(\Leftrightarrow 1-cosx> 0(do \ \ 1+cosx\geq 0)\)

    \(\Leftrightarrow cosx\neq 1 \Leftrightarrow x \neq k2 \pi,k\in \mathbb{Z}\)

    Vậy tập xác định của hàm số là \(D=\mathbb{R} \setminus \left \{ k 2 \pi,k\in \mathbb{Z} \right \}\)

    Câu c:

    Hàm số xác định khi \(cos\left ( x-\frac{\pi }{3} \right )\neq 0\) xác định khi:\(x-\frac{\pi }{3}\neq \frac{\pi }{2}+k\pi \Leftrightarrow x\neq \frac{5\pi }{6}+k\pi (k\in Z)\)

    Vậy tập xác định của hàm số \(D=\mathbb{R} \setminus \left \{ \frac{5\pi }{6}+k \pi ,k\in Z \right \}\)

    Câu d:

    Hàm số xác định khi \(sin \left ( x+\frac{\pi }{6} \right )\neq 0\) xác định khi \(x+\frac{\pi }{6}\neq k\pi \Leftrightarrow x\neq -\frac{\pi }{6}+k\pi,k\in Z\)

    Vậy tập xác định của hàm số là \(D=\mathbb{R} \setminus \left \{ \frac{\pi }{6}+k \pi ,k\in Z \right \}\)




    Bài 3 trang 17 sgk giải tích 11. Dựa vào đồ thị hàm số \(y = sinx\), hãy vẽ đồ thị của hàm số \(y = |sinx|\).

    Giải

    Ta có

    \(\left| {{\mathop{\rm s}\nolimits} {\rm{inx}}} \right| = \left\{ \matrix{
    {\mathop{\rm s}\nolimits} {\rm{inx}},{\mathop{\rm s}\nolimits} {\rm{inx}} \ge {\rm{0}} \hfill \cr {\rm{ - sinx}},{\mathop{\rm s}\nolimits} {\rm{inx}} \le 0 \hfill \cr} \right.\)

    Mà \(sinx < 0\) \(⇔ x ∈ (π + k2π , 2π + k2π), k ∈ Z\) nên lấy đối xứng qua trục \(Ox\) phần đồ thị của hàm số \(y = sinx\) trên các khoảng này còn giữ nguyên phần đồ thị hàm số \(y = sinx\) trên các đoạn còn lại ta được đồ thị của hàm số \(y = |sinx|\)

    [​IMG]




    Bài 4 trang 17 sgk giải tích 11. Chứng minh rằng \(sin2(x + kπ) = sin 2x\) với mọi số nguyên \(k\). Từ đó vẽ đồ thị hàm số \(y = sin2x\).

    Đáp án :

    Do \(sin (t + k2π)\) = \(sint\), \(\forall k \in Z\) (tính tuần hoàn của hàm số f\((t) = sint)\), từ đó

    \(sin(2π + k2π) = sin2x \Rightarrow sin2(tx+ kπ) = sin2x\), \(∀k ∈ Z\).

    Do tính chất trên, để vẽ đồ thị của hàm số \(y = sin2x\), chỉ cần vẽ đồ thị của hàm số này trên một đoạn có độ dài \(π\) (đoạn \(\left[ { - {\pi \over 2};{\pi \over 2}} \right]\) Chẳng hạn), rồi lại tịnh tiến dọc theo trục hoành sang bên phải và bên trái từng đoạn có độ dài \(π\) .

    Với mỗi \(x_0 \in\) \(\left[ { - {\pi \over 2};{\pi \over 2}} \right]\) thì \(x = 2x_0\in [-π ; π]\), điểm \(M(x ; y = sinx)\) thuộc đoạn đồ thị \((C)\) của hàm số \(y = sinx\), \((x ∈ [-π ; π])\) và điểm \(M’(x_0 ; y_0 = sin2x_0)\) thuộc đoạn đồ thị \((C’)\) của hàm số \(y = sin2x\), ( \(x ∈\) \(\left[ { - {\pi \over 2};{\pi \over 2}} \right]\)) (h.5).

    Chú ý rằng, \(x = 2x_0 \Rightarrow sinx = sin2x_0\) do đó hai điểm \(M’\) , \(M\) có tung độ bằng nhau nhưng hoành độ của \(M’\) bằng một nửa hoành độ của \(M\). Từ đó ta thấy có thể suy ra \((C’)\) từ \((C)\) bằng cách “co” \((C)\) dọc theo trục hoành như sau :

    - Với mỗi \(M(x ; y) ∈ (C)\) , gọi \(H\) là hình chiếu vuông góc của \(M\) xuống trục \(Oy\) và \(M’\) là trung điểm của đoạn \(HM\) thì \(M’\) \(\left( {{x \over 2};y} \right)\) \(∈ (C’)\) (khi \(M\) vạch trên \((C)\) thì \(M’\) vạch trên \((C’))\). Trong thực hành, ta chỉ cần nối các điểm đặc biệt của \((C’)\) (các điểm \(M’\) ứng với các điểm \(M\) của \((C)\) với hoành độ \(\in \left\{ {0;\,\, \pm {\pi \over 6};\,\, \pm {\pi \over 4};\,\, \pm {\pi \over 3};\,\, \pm {\pi \over 2}} \right\}\) ).

    [​IMG]




    Bài 5 trang 18 sgk giải tích 11. Dựa vào đồ thị hàm số \(y = cosx\), tìm các giá trị của \(x\) để \(cosx = \frac{1}{2}\).

    Đáp án :

    \(cosx = \frac{1}{2}\) là phương trình xác định hoành độ giao điểm của đường thẳng \(y= \frac{1}{2}\) và đồ thị \(y = cosx\).

    Từ đồ thị đã biết của hàm số \(y = cosx\) ta xác định giao điểm của nó với đường thẳng \(y= \frac{1}{2}\), ta suy ra \(x = \pm {\pi \over 3} + k2\pi (k \in Z)\), (Các em học sinh nên chú ý tìm giao điểm của đường thẳng cắt đồ thị trong đoạn [-π ; π] và thấy ngay rằng trong đoạn này chỉ có giao điểm ứng với \(x = \pm {\pi \over 3}\) rồi sử dụng tính tuần hoàn để suy ra tất cả các giá trị của \(x\) là \(x = \pm {\pi \over 3} + k2\pi (k \in Z)\).

    [​IMG]



    Bài 6 trang 18 sgk giải tích 11. Dựa vào đồ thị hàm số \(y = sinx\), tìm các khoảng giá trị của \(x\) để hàm số đó nhận giá trị dương.

    Đáp án :

    [​IMG]


    Nhìn đồ thị \(y = sinx\) ta thấy trong đoạn \([-π ; π]\) các điểm nằm phía trên trục hoành của đồ thị \(y = sinx\) là các điểm có hoành độ thuộc khoảng \((0 ; π)\). Từ đó, tất cả các khoảng giá trị của \(x\) để hàm số đó nhận giá trị dương là \((0 + k2π ; π + k2π)\) hay \((k2π ; π + k2π)\) trong đó \(k\) là một số nguyên tùy ý.




    Bài 7 trang 18 sgk giải tích 11. Dựa vào đồ thị hàm số \(y = cos x\), tìm các khoảng giá trị của \(x\) để hàm số đó nhận giá trị âm

    Trả lời:

    [​IMG]



    Dựa vào đồ thị hàm số \(y = cosx\), để làm hàm số nhận giá trị âm thì:

    \(x \in \left( { - {{3\pi } \over 2}; - {\pi \over 2}} \right);\left( {{\pi \over 2};{{3\pi } \over 2}} \right)... \)

    \(\Rightarrow x \in \left( {{\pi \over 2} + k2\pi ;{{3\pi } \over 2} + k2\pi } \right),k \in Z\)