Đề thi chọn HSG VMO năm 2016

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Bài 1 (5 điểm). Giải hệ phương trình:$\left\{\begin{matrix}6x-y+z^2=3 & & & \\ x^2-y^2-2z=-1 & & & \\ 6x^2-3y^2-y-2z^2=0 & & & \end{matrix}\right.(x,y,z\in\mathbb{R})$

    Bài 2 (5 điểm).

    a) Cho dãy số $a(n)$ xác định bởi $a_{n}=\ln(2n^2+1)-\ln(n^2+n+1)$ với $n=1,2...$.Chứng minh chỉ có hữu hạn số $n$ sao cho $\left \{ a_{n} \right \}< \frac{1}{2}$

    b) Cho dãy số $b(n)$ xác định bởi $b_{n}=\ln(2n^2+1)+\ln(n^2+n+1)$ với $n=1,2...$.Chứng minh tồn tại vô hạn số $n$ sao cho $\left \{ b_n \right \}<\frac{1}{2016}$

    Bài 3 (5 điểm). Cho tam giác $ABC$ có $B,C$ cố định,$A$ thay đổi sao cho tam giác $ABC$ nhọn.Gọi $D$ là trung điểm của $BC$ và $E,F$ tương ứng là hình chiếu vuông góc của $D$ lên $AB,AC$

    a) Gọi $O$ là tâm của đường tròn ngoại tiếp tam giác $ABC$.$EF$ cắt $AO$ và $BC$ lần lượt tại $M$ và $N$.Chứng minh đường tròn ngoại tiếp tam giác $AMN$ đi qua điểm cố định

    b) Các tiếp tuyến của đường tròn ngoại tiếp tam giác $AEF$ tại $E,F$ cắt nhau tại $T$.Chứng minh $T$ thuộc đường thẳng cố định

    Bài 4 (5 điểm). Người ta trồng hai loại cây khác nhau trên một miếng đất hình chữ nhật kích thước $m\times n$ ô vuông (mỗi ô trồng một cây).Một cách trồng được gọi là ấn tượng nếu như:

    i) Số lượng cây được trồng của hai loại cây bằng nhau

    ii) Số lượng chênh lệnh của hai loại cây trên mỗi hàng không nhỏ hơn một nửa số ô của hàng đó và số lượng chênh lệnh của hai loại cây trên mỗi cột không nhỏ hơn một nửa số ô của cột đó

    a) Hãy chỉ ra cách trồng ấn tượng khi $m = n = 2016$

    b) Chứng minh nếu có một cách trồng ấn tượng thì cả $m$ và $n$ đều là bội của $4$

    Bài 5 (6 điểm). Tìm tất cả các số thực $\alpha$ để tồn tại hàm số $f: \mathbb{R} \to \mathbb{R}$ thoả mãn
    i) $f(1)=2016$.
    ii) $f \left( x+y+f(y) \right) = f(x)+ \alpha y$ với mọi $x,y \in \mathbb{R}$.

    Bài 6 (7 điểm). Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ (với tâm $O$) có các góc ở đỉnh $B,C$ đều nhọn. Lấy điểm $M$ trên cung $BC$ không chứ $A$ sao cho $AM$ không vuông góc với $BC$. $AM$ cắt trung trực $BC$ tại $T$. Đường tròn ngoại tiếp tam giác $AOT$ cắt $(O)$ tại $N$ ($N \ne A$).
    • Chứng minh $\angle BAM= \angle CAN$.
    • Gọi $I$ là tâm đường tròn nội tiếp và $G$ là chân phân giác trong góc $A$ của tam giác $ABC$. $AI,MI,NI$ cắt $(O)$ lần lượt tại $D,E,F$. Gọi $P,Q$ tương ứng là giao điểm của $DF$ với $AM$ và $DE$ với $AN$. Đường tròn đi qua $P$ và tiếp xúc với $AD$ tại $I$ cắt $DF$ tại $H$ ($H \ne D$), đường tròn đi qua $Q$ và tiếp xúc với $AD$ tại $I$ cắt $DE$ tại $K$ ($K \ne D$). Chứng minh đường tròn ngoại tiếp tam giác $GHK$ tiếp xúc với $BC$.
    Bài 7 (7 điểm). Số nguyên dương $n$ được gọi là số hoàn chỉnh nếu $n$ bằng tổng các ước số dương của nó (không kể chính nó).
    • Chứng minh rằng nếu $n$ là số hoàn chỉnh lẻ thì $n$ có dạng $$n=p^sm^2$$ trong đó $p$ là số nguyên tố có dạng $4k+1$, $s$ là số nguyên dương có dạng $4h+1$ và $m$ là số nguyên dương không chia hết cho $p$.
    • Tìm tất cả các số nguyên dương $n>1$ sao cho $n-1$ và $\frac{n(n+1)}{2}$ đều là các số hoàn chỉnh.