Giải tích 12 nâng cao - Chương 1 - Bài 5. Đường tiệm cận của đồ thị hàm số

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Bài 34 trang 35 SGK giải tích 12 nâng cao. Tìm các đường tiệm cận của đồ thị hàm số sau:
    a) \(y = {{x - 2} \over {3x + 2}}\)
    b) \(y = {{ - 2x - 2} \over {x + 3}}\)
    c) \(y = x + 2 - {1 \over {x - 3}}\)
    d) \(y = {{{x^2} - 3x + 4} \over {2x + 1}}\)
    e) \(y = {{x + 2} \over {{x^2} - 1}}\)
    f) \(y = {x \over {{x^3} + 1}}\)
    Gỉải
    a) TXĐ: \(D = \mathbb R\backslash \left\{ { - {2 \over 3}} \right\}\)
    Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {{x + 2} \over {3x + 2}} = \mathop {\lim }\limits_{x \to + \infty } {{1 - {2 \over x}} \over {3 + {2 \over x}}} = {1 \over 3}\) và \(\mathop {\lim }\limits_{x \to - \infty } y = {1 \over 3}\) nên đường thẳng \(y = {1 \over 3}\) là đường tiệm cận ngang của đồ thị.
    Vì \(\mathop {\lim }\limits_{x \to {{\left( { - {2 \over 3}} \right)}^ + }} y = - \infty \) \(\mathop {\lim }\limits_{x \to {{\left( { - {2 \over 3}} \right)}^ - }} y = + \infty \); nên đường thẳng \(x = - {2 \over 3}\) là tiệm cận đứng của đồ thị.
    b) TXĐ: \(D =\mathbb R\backslash \left\{ { - 3} \right\}\)
    Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {{ - 2 - {2 \over x}} \over {1 + {3 \over x}}} = - 2\) và \(\mathop {\lim }\limits_{x \to - \infty } y = - 2\) nên đường thẳng \(y = - 2\) là tiệm cận ngang của đồ thị.
    Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} y = + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} y = - \infty \) nên đường thẳng \(x = - 3\) là tiệm cận đứng của đồ thị.
    c) TXĐ: \(D =\mathbb R\backslash \left\{ 3 \right\}\)
    Vì \(\mathop {\lim }\limits_{x \to {3^ + }} y = - \infty \) và \(\mathop {\lim }\limits_{x \to {3^ - }} y = + \infty \) nên đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị.
    Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } {{ - 1} \over {x - 3}} = 0\) và \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } {{ - 1} \over {x - 3}} = 0\) nên đường thẳng \(y = x + 2\) là tiệm cận xiên của đồ thị.
    d) TXĐ: \(D =\mathbb R\backslash \left\{ { - {1 \over 2}} \right\}\)
    Vì \(\mathop {\lim }\limits_{x \to {{\left( { - {1 \over 2}} \right)}^ + }} y = + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - {1 \over 2}} \right)}^ - }} y = - \infty \) nên đường thẳng \(x = - {1 \over 2}\) là tiệm cận đứng của đồ thị.
    Tiệm cận xiên có dạng \(y = ax + b\)
    \(\eqalign{
    & a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^2} - 3x + 4} \over {x\left( {2x + 1} \right)}} = {1 \over 2} \cr
    & b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - {x \over 2}} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^2} - 3x + 4} \over {2x + 1}} - {x \over 2}} \right) = \mathop {\lim }\limits_{x \to \pm \infty } {{ - 7x + 8} \over {2\left( {2x + 1} \right)}} = - {7 \over 4} \cr} \)
    \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = + \infty \)
    Đường thẳng \(y = {x \over 2} - {7 \over 4}\) là tiệm cận xiên của đồ thị (khi \(x \to + \infty \) và \(x \to - \infty \)).
    Cách khác:
    Ta có: \(y = {1 \over 2}.{{{x^2} - 3x + 4} \over {x + {1 \over 2}}} = {1 \over 2}\left( {x - {7 \over 2} + {{23} \over {4\left( {x + {1 \over 2}} \right)}}} \right)\)
    [​IMG]
    Vì \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {{x \over 2} - {7 \over 4}} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } {{23} \over {8\left( {x + {1 \over 2}} \right)}} = 0\) nên đường thẳng \(y = {x \over 2} - {7 \over 4}\) là tiệm cận xiên của đồ thị.
    e) TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;1} \right\}\)
    * Vì \(\mathop {\lim }\limits_{x \to \pm \infty } y = 0\) nên đường thẳng y = 0 là tiệm cận ngang của đồ thị.
    * \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} {{x + 2} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} {{x + 2} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} = - \infty \) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị.
    * \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{x + 2} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} = - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} {{x + 2} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} = + \infty \) nên đường thẳng \(x = - 1\) là tiệm cận đứng của đồ thị.
    f) TXĐ: \(D =\mathbb R\backslash \left\{ { - 1} \right\}\)
    * Vì \(\mathop {\lim }\limits_{x \to \pm \infty } y = 0\) nên \(y = 0\) là tiệm cận ngang
    * \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = + \infty \) nên \(x = -1\) là tiệm cận đứng.



    Bài 35 trang 35 SGK giải tích 12 nâng cao. Tìm các tiệm cận của đồ thị hàm số sau:
    \(a)\,y = {{2x - 1} \over {{x^2}}} + x - 3\,;\)
    \(b)\,\,{{{x^3} + 2} \over {{x^2} - 2x}}\)
    \(c)\,\,{{{x^3} + x + 1} \over {{x^2} - 1\,}}\,\,;\)
    \(d)\,\,{{{x^2} + x + 1} \over { - 5{x^2} - 2x + 3}}\)
    Giải
    a) TXĐ: \(D =\mathbb R\backslash \left\{ 0 \right\}\)
    * Vì \(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ - }} y = - \infty \) nên x = 0 là tiệm cận đứng.
    * \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x - 3} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } {{2x - 1} \over {{x^2}}} = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{2 \over x} - {1 \over {{x^2}}}} \right) = 0\) nên y = x – 3 là tiệm cận xiên.
    b) TXĐ: \(D =\mathbb R\backslash \left\{ {0;2} \right\}\)
    * \(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = - \infty \) và \(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = + \infty \) nên x = 0 là tiệm cận đứng.
    * \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = - \infty \) nên \(x = 2\) là tiệm cận đứng.
    * Tiệm cận xiên có dạng \(y = ax +b\)
    \(\eqalign{
    & a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^3} + 2} \over {{x^3} - 2{x^2}}} = \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {2 \over {{x^3}}}} \over {1 - {2 \over x}}} = 1 \cr
    & b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^3} + 2} \over {{x^2} - 2x}} - x} \right) = \mathop {\lim }\limits_{x \to \pm \infty } {{2{x^2} + 2} \over {{x^2} - 2x}} = 2 \cr} \)
    Đường thẳng \(y = x + 2\) là tiệm cận xiên của đồ thị.
    c) TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;1} \right\}\)
    * \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = - \infty \) nên \(x = -1\) là tiệm cận đứng .
    \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = - \infty \) và \(\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \) nên \(x = 1\) là tiệm cận đứng.
    * Tiệm cận xiên có dạng \(y = ax + b\)
    \(\eqalign{
    & a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^3} + x + 1} \over {x\left( {{x^2} - 1} \right)}} = \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {1 \over {{x^2}}} + {1 \over {{x^3}}}} \over {1 - {1 \over {{x^2}}}}} = 1 \cr
    & b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^3} + x + 1} \over {{x^2} - 1}}} \right) = \mathop {\lim }\limits_{x \to \pm \infty } {{2x + 1} \over {{x^2} - 1}} = 0 \cr} \)
    \( \Rightarrow y = x\) là tiệm cận xiên.
    d) TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;{3 \over 5}} \right\}\)
    * Vì \(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {1 \over x} + {1 \over {{x^2}}}} \over { - 5 - {2 \over x} + {3 \over {{x^2}}}}} = - {1 \over 5}\) nên \(y = - {1 \over 5}\) là tiệm cận ngang.
    * \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = - \infty \) nên \(x = -1\) là tiệm cận đứng.
    \(\mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ + }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} = - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ - }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} = + \infty \) nên \(x = {3 \over 5}\) là tiệm cận đứng.



    Bài 36 trang 35 SGK giải tích 12 nâng cao. Tìm các tiệm cận của đồ thị hàm số sau:
    a) \(y = \sqrt {{x^2} - 1} \,\,\);
    b) \(y = 2x + \sqrt {{x^2} - 1} \)
    c) \(y = x + \sqrt {{x^2} + 1} \)
    d) \(y = \sqrt {{x^2} + x + 1} \).
    Gỉải
    a) TXĐ: \(D =\mathbb R\backslash ( - \infty ;1{\rm{]}} \cup {\rm{[}}1; + \infty )\)
    * Tiệm cận xiên khi \(x \to + \infty \)
    Ta có: \(a = \mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} - 1} } \over x} = \mathop {\lim }\limits_{x \to + \infty } {{x\sqrt {1 - {1 \over {{x^2}}}} } \over x} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {1 - {1 \over {{x^2}}}} = 1\)
    \(b = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - 1} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {{ - 1} \over {\sqrt {{x^2} - 1} + x}} = 0\)
    Vậy đường thẳng \(y = x\) là tiệm cận xiên của đồ thị khi \(x \to + \infty \).
    * Tiệm cận xiên khi \(x \to - \infty \)
    \(a = \mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^2} - 1} } \over x} = \mathop {\lim }\limits_{x \to - \infty } {{ - x\sqrt {1 - {1 \over {{x^2}}}} } \over x} = - \mathop {\lim }\limits_{x \to - \infty } \sqrt {1 - {1 \over {{x^2}}}} = - 1\)
    \(b = \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - 1} - x} \right) = \mathop {\lim }\limits_{x \to - \infty } {{ - 1} \over {\sqrt {{x^2} - 1} + x}} = 0\)
    Vậy đường thẳng \(y = -x\) là tiệm cận xiên của đồ thị (khi \(x \to - \infty \)).
    b) TXĐ: \(D =\mathbb R\backslash ( - \infty ;1{\rm{]}} \cup {\rm{[}}1; + \infty )\)
    * Tiệm cận xiên khi \(x \to + \infty \)
    Ta có: \(a = \mathop {\lim }\limits_{x \to + \infty } {y \over x} = \mathop {\lim }\limits_{x \to + \infty } \left( {2 + {{\sqrt {{x^2} + 1} } \over x}} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {2 + \sqrt {1 - {1 \over {{x^2}}}} } \right) = 3\)
    \(b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - 3x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - 1} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {{ - 1} \over {\sqrt {{x^2} - 1} + x}} = 0\)
    Vậy đường thẳng \(y = 3x\) là tiệm cận xiên của đồ thị (khi \(x \to + \infty \)).
    * Tiệm cận xiên khi \(x \to - \infty \)
    \(a = \mathop {\lim }\limits_{x \to - \infty } {y \over x} = \mathop {\lim }\limits_{x \to - \infty } \left( {2 + {{\sqrt {{x^2} + 1} } \over x}} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {2 - \sqrt {1 - {1 \over {{x^2}}}} } \right) = 1\)
    \(b = \mathop {\lim }\limits_{x \to - \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - 1} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } {{ - 1} \over {\sqrt {{x^2} - 1} - x}} = 0\)
    Vậy đường thẳng \(y = x\) là tiệm cận xiên của đồ thị (khi \(x \to - \infty \))
    c) TXĐ: \(D =\mathbb R\)
    * Tiệm cận xiên khi \(x \to + \infty \)
    \(\eqalign{
    & a = \mathop {\lim }\limits_{x \to + \infty } {y \over x} = \mathop {\lim }\limits_{x \to + \infty } \left( {1 + {{\sqrt {{x^2} + 1} } \over x}} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {1 + \sqrt {1 + {1 \over {{x^2}}}} } \right) = 2 \cr
    & b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - 2x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt {{x^2} + 1} + x}} = 0 \cr} \)
    Đường thẳng \(y = 2x\) là tiệm cận xiên (khi \(x \to + \infty \))
    * Tiệm cận khi \(x \to - \infty \)
    \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {x + \sqrt {{x^2} - 1} } \right) = \mathop {\lim }\limits_{x \to - \infty } {1 \over {x - \sqrt {{x^2} - 1} }} = 0\)
    Đường thẳng \(y = 0\) là tiệm cận ngang (khi \(x \to - \infty \))
    d) TXĐ: \(D =\mathbb R\)
    * \(a = \mathop {\lim }\limits_{x \to + \infty } {y \over x} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} = 1\)
    \(\eqalign{
    & b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - x} \right) \cr
    & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to + \infty } {{x + 1} \over {\sqrt {{x^2} + x + 1} + x}} = \mathop {\lim }\limits_{x \to + \infty } {{1 + {1 \over x}} \over {\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} }+1} = {1 \over 2} \cr} \)
    Đường thẳng \(y = x + {1 \over 2}\) là tiệm cận xiên (khi \(x \to + \infty \))
    * \(a = \mathop {\lim }\limits_{x \to - \infty } {y \over x} = \mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^2} + x + 1} } \over x} = \mathop {\lim }\limits_{x \to - \infty } {{ - x\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} } \over x} = \mathop {\lim }\limits_{x \to - \infty } -\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} = - 1\)
    \(b = \mathop {\lim }\limits_{x \to - \infty } \left( {y + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + x + 1} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } {{x + 1} \over {\sqrt {{x^2} + x + 1} - x}} = \mathop {\lim }\limits_{x \to - \infty } {{1 + {1 \over x}} \over { - \sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} }-1} = - {1 \over 2}\)
    Đường thẳng \(y = - x - {1 \over 2}\) là tiệm cận xiên (khi \(x \to - \infty \))



    Bài 37 trang 36 SGK giải tích 12 nâng cao. Tìm các đường tiệm cận của đồ thị mỗi hàm số sau:
    a) \(y = x + \sqrt {{x^2} - 1} \)
    b) \(y = \sqrt {{x^2} - 4x + 3} \)
    c) \(y = \sqrt {{x^2} + 4} \)
    d) \(y = {{{x^2} + x + 1} \over {{x^2} - 1}}\)
    Gỉải
    a) TXĐ: \(D = \left( { - \infty ; - 1} \right] \cup \left[ {1; + \infty } \right)\)
    * \(a = \mathop {\lim }\limits_{x \to + \infty } {y \over x} = \mathop {\lim }\limits_{x \to + \infty } \left( {1 + {{\sqrt {{x^2} - 1} } \over x}} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {1 + \sqrt {1 - {1 \over {{x^2}}}} } \right) = 2\)
    \(b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - 2x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - 1} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {{ - 1} \over {\sqrt {{x^2} - 1} + x}} = 0\)
    Ta có tiệm cận xiên \(y = 2x\) (khi \(x \to + \infty \))
    * \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {x + \sqrt {{x^2} - 1} } \right) = \mathop {\lim }\limits_{x \to - \infty } {{ - 1} \over {\sqrt {{x^2} - 1} - x}} = 0\)
    Ta có tiệm cận ngang \(y = 0\) (khi \(x \to - \infty \))
    b) TXĐ: \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)
    * \(a = \mathop {\lim }\limits_{x \to + \infty } {y \over x} = \mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} - 4x + 3} } \over x} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {1 - {4 \over x} + {3 \over {{x^2}}}} = 1\)
    \(b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - 4x + 3} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {{ - 4x + 3} \over {\sqrt {{x^2} - 4x + 3} + x}} = \mathop {\lim }\limits_{x \to + \infty } {{ - 4 + {3 \over x}} \over {\sqrt {1 - {4 \over x} + {3 \over {{x^2}}}} + 1}} = - 2\)
    Ta có tiệm cận xiên \(y = x -2\) (khi \(x \to + \infty \)).
    * \(a = \mathop {\lim }\limits_{x \to - \infty } {y \over x} = \mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^2} - 4x + 3} } \over x} = \mathop {\lim }\limits_{x \to - \infty } {{ - x\sqrt {1 - {4 \over x} + {3 \over {{x^2}}}} } \over x} = - \mathop {\lim }\limits_{x \to - \infty } \sqrt {1 - {4 \over x} + {3 \over {{x^2}}}} = - 1\)
    \(\eqalign{
    & b = \mathop {\lim }\limits_{x \to - \infty } \left( {y + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - 4x + 3} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } {{ - 4x + 3} \over {\sqrt {{x^2} - 4x + 3} - x}} = \mathop {\lim }\limits_{x \to - \infty } {{ - 4x + 3} \over { - x\sqrt {1 - {4 \over x} + {3 \over {{x^2}}}} - x}} \cr
    & \,\, = \,\,\,\mathop {\lim }\limits_{x \to - \infty } {{ - 4 + {3 \over x}} \over { - \sqrt {1 - {4 \over x} + {3 \over {{x^2}}}} - 1}} = {{ - 4} \over { - 2}} = 2 \cr} \)
    Tiệm cận xiên: \(y = -x + 2\) (khi \(x \to - \infty \)).
    c) TXD: \(D =\mathbb R\)
    * \(a = \mathop {\lim }\limits_{x \to + \infty } {y \over x} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {1 + {4 \over {{x^2}}}} = 1\)
    \(b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 4} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {4 \over {\sqrt {{x^2} + 4} + x}} = 0\)
    Tiệm cận xiên \(y = x\) (khi \(x \to + \infty \))
    * \(a = \mathop {\lim }\limits_{x \to - \infty } {y \over x} = \mathop {\lim }\limits_{x \to - \infty }- \sqrt {1 + {4 \over {{x^2}}}} = - 1\)
    \(b = \mathop {\lim }\limits_{x \to - \infty } \left( {y + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 4} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } {4 \over {\sqrt {{x^2} + 4} - x}} = 0\)
    Tiệm cận xiên \(y = -x\) (khi \(x \to - \infty \))
    d) TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;1} \right\}\)
    * Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {{1 + {1 \over x} + {1 \over {{x^2}}}} \over {1 - {1 \over {{x^2}}}}} = 1\)
    Tiệm cận ngang: \(y = 1\) (khi \(x \to - \infty \) và \(x \to + \infty \))
    * \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} {{{x^2} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} {{{x^2} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = - \infty \) nên \(x = 1\) là tiệm cận đứng.
    Tương tự: \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = + \infty \) nên \(x = -1\) là tiệm cận đứng.



    Bài 38 Trang 36 SGK giải tích 12 nâng cao.
    a) Tìm tiệm cận đứng và tiệm cận xiên của đồ thị \((C)\) của hàm số:
    \(y = {{{x^2} - 2x + 3} \over {x - 3}}\)
    b) Xác định giao điểm \(I\) của hai tiệm cận trên và viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo véc tơ \(\overrightarrow {OI} \).
    c) Viết phương trinh của đường cong \((C)\) đối với hệ tọa độ \(IXY\).
    Từ đó suy ra rằng \(I\) là tâm đối xứng của đường cong \((C)\).
    Giải
    a) Ta có: \(y = x + 1 + {5 \over {x - 3}}\)
    [​IMG]
    TXĐ: \(D =\mathbb R\backslash \left\{ 3 \right\}\)

    \(\left\{ \matrix{
    y'\left( 1 \right) = 0 \hfill \cr
    y\left( 1 \right) = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    b = - 3 \hfill \cr
    c = 0 \hfill \cr} \right.\) \(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty \) và \(\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \) nên \(x = 3\) là tiệm cận đứng.
    \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } {5 \over {x - 3}} = 0\) nên \(y = x + 1\) là tiệm cận xiên.
    b) Tọa độ giao điểm \(I(x;y)\) của hai tiệm cận là nghiệm của hệ phương trình
    \(\left\{ \matrix{
    x = 3 \hfill \cr
    y = x + 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    x = 3 \hfill \cr
    y = 4 \hfill \cr} \right.\)
    Vậy \(I(3;4)\) là giao điểm của hai tiệm cận trên.
    Công thức chuyển hệ tọa độ trong phép tịnh tiến theo véc tơ \(\overrightarrow {OI} \) là
    \(\left\{ \matrix{
    x = X + 3 \hfill \cr
    y = Y + 4 \hfill \cr} \right.\)
    c) Phương trình của đường cong \((C)\) đối với hệ tọa độ \(IXY\) là
    \(Y + 4 = X + 3 + 1 + {5 \over {X + 3 - 3}} \Leftrightarrow Y = X + {5 \over X}\)
    Đây là hàm số lẻ, do đó \((C)\) nhận gốc tọa độ \(I\) làm tâm đối xứng.



    Bài 39 trang 36 SGK giải tích 12 nâng cao. Cùng các câu hỏi như trong bài tập 38 đối với đồ thị của hàm số sau:
    a) \(y = {{{x^2} + x - 4} \over {x + 2}}\)
    b) \(y = {{{x^2} - 8x + 19} \over {x - 5}}\)
    Giải
    a) \(y = x - 1 - {2 \over {x + 2}}\)
    [​IMG]
    TXĐ: \(D =\mathbb R\backslash \left\{ { - 2} \right\}\)
    \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} y = - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} y = + \infty \) nên \(x = -2\) là tiệm cận đứng.
    \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } {{ - 2} \over {x + 2}}=0\) nên \(y = x -1\) là tiệm cận xiên.
    b) Tọa độ giao điểm \(I\) của hai tiệm cận là nghiệm hệ
    \(\left\{ \matrix{
    x = - 2 \hfill \cr
    y = x - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    x = - 2 \hfill \cr
    y = - 3 \hfill \cr} \right.\)
    Vậy \(I(-2;-3)\). Công thức chuyển hệ tọa độ trong phép tịnh tiến vé tơ \(\overrightarrow {OI} \) là
    \(\left\{ \matrix{
    x = X - 2 \hfill \cr
    y = Y - 3 \hfill \cr} \right.\)
    c) Ta nói: \(y = x - 3 + {4 \over {x - 5}}\)
    Tiệm cận đứng: \(x = 5\); tiệm cận xiên: \(y = x – 3\).
    \(I\left( {5;2} \right);\,\,\left\{ \matrix{
    x = X + 5 \hfill \cr
    y = Y + 2 \hfill \cr} \right.\)
    Phương trình của đường cong đối với hệ tọa độ \(IXY\) là \(Y = X + {4 \over X}\).