Giải tích 12 nâng cao - Chương 2 - Bài 6. Hàm số lũy thừa

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Bài 57 sách giải tích 12 nâng cao trang 117. Trên hình bên cho hai đường cong (\({C_1}\)) (đường nét liền) và (\({C_2}\)) (đường nét đứt) được vẽ trên cùng một mặt phẳng tọa độ. Biết rằng mỗi đường cong ấy là đồ thị của ột trong hai hàm số lũy thừa \(y = {x^{ - 2}}\) và \(y = {x^{ - {1 \over 2}}}\,\,\left( {x > 0} \right)\). Chỉ dựa vào tính chất của lũy thừa, có thể nhận biết đường cong nào là đồ thị của hàm số nào được không?
    Hãy nêu rõ lập luận.
    [​IMG]
    Giải
    Giả sử (\({C_1}\)) và (\({C_2}\)) theo thứ tự là đồ thị của hàm số \(y = {x^\alpha }\) và \(y = {x^\beta }\) ( \(\alpha \) và \(\beta \) là -2 hoặc \( - {1 \over 2}\)). Trên đồ thị, ta thấy trên khoảng \(\left( {1; + \infty } \right)\), đường cong (\({C_2}\))nằm trên đường cong (\({C_1}\)), nghĩa là khi x > 1 ta có bất đẳng thức \({x^\beta } > {x^\alpha }\). Vậy \(\beta = - {1 \over 2}\) và \(\alpha = - 2\).
    Vậy đường (\({C_1}\)) là đồ thị của hàm số \(y = {x^{ - 2}}\), (\({C_2}\)) là đồ thị hàm số \(y = {x^{ - {1 \over 2}}}\).



    Bài 58 sách giải tích 12 nâng cao trang 117. Tìm đạo hàm của các hàm số sau:
    a) \(y = {\left ( {2x + 1} \right)^\pi }\)
    b) \(y = \root 5 \of {{{\ln }^3}5x} \)
    c) \(y = \root 3 \of {{{1 + {x^3}} \over {1 - {x^3}}}} \)
    d) \(y = {\left( {{x \over b}} \right)^a}{\left( {{a \over x}} \right)^b}\) với a > 0, b> 0
    Giải
    a) \(y' = 2\pi {\left( {2x + 1} \right)^{\pi - 1}}\)
    b) Áp dụng: \(\left( {\root n \of u } \right)' = {u \over {n\root n \of {{u^{n - 1}}} }}\)
    \(y' = {{\left( {{{\ln }^3}5x} \right)'} \over {5\root 5 \of {{{\left( {{{\ln }^3}5x} \right)}^4}} }} = {{3{{\ln }^2}5x} \over {5x\root 5 \of {{{\ln }^{12}}5x} }}\)
    c) Đặt \(u = {{1 + {x^3}} \over {1 - {x^3}}};\,\,y' = {{u'} \over {3\root 3 \of {{u^2}} }}\)
    \(u' = {{3{x^2}\left( {1 - {x^3}} \right) - 3{x^2}\left( {1 + {x^3}} \right)} \over {{{\left( {1 - {x^3}} \right)}^2}}} = {{6{x^2}} \over {{{\left( {1 - {x^3}} \right)}^2}}}\)
    Do đó: \(y' = {{2{x^2}} \over {{{\left( {1 - {x^3}} \right)}^2}}}.{1 \over {\root 3 \of {{{\left( {{{1 + {x^3}} \over {1 - {x^3}}}} \right)}^2}} }} = {{2{x^2}} \over {\root 3 \of {{{\left( {1 - {x^3}} \right)}^4}{{\left( {1 + {x^3}} \right)}^2}} }}\)
    d)
    \(\eqalign{
    & y' = \left[ {{{\left( {{x \over b}} \right)}^a}} \right]'{\left( {{a \over x}} \right)^b} + {\left( {{x \over b}} \right)^a}\left[ {{{\left( {{a \over x}} \right)}^b}} \right]' \cr
    & \,\,\,\,\,\, = {a \over b}{\left( {{x \over a}} \right)^{a - 1}}{\left( {{a \over x}} \right)^b} + {\left( {{x \over b}} \right)^a}b{\left( {{a \over x}} \right)^{b - 1}}\left( { - {a \over {{x^2}}}} \right) = {\left( {{x \over b}} \right)^a}{\left( {{a \over x}} \right)^b}{{a - b} \over x} \cr} \)



    Bài 59 sách giải tích 12 nâng cao trang 117. Tính giá trị gần đúng đạo hàm của mỗi hàm số sau tại điểm đã cho (chính xác đến hàng phần trăm):
    a) \(y = {\log _3}\left( {\sin x} \right)\,\,tai\,x = {\pi \over 4}\,;\)
    b) \(y = {{{2^x}} \over {{x^2}}}\,\,tai\,\,x = 1\)
    Giải
    a) \(y' = {{\cos x} \over {\sin x}}.{1 \over {\ln 3}} = {{\cot x} \over {\ln 3}};\,\,\,y'\left( {{\pi \over 4}} \right) \approx 0,91\)
    b) \(y' = {{{2^x}\left( {x\ln 2 - 2} \right)} \over {{x^3}}};\,\,\,\,y'\left( 1 \right) \approx - 2,61\)



    Bài 60 sách giải tích 12 nâng cao trang 117.
    a) Chứng minh rằng đồ thị của hai hàm số \(y = {a^x};\,y = {\left( {{1 \over a}} \right)^x}\) đối xứng với nhau qua trục tung.
    b) Chứng minh rằng đồ thị của hai hàm số \(y = {\log _a}x;\,\,y = {\log _{{1 \over a}}}x\) đối xứng với nhau qua trục hoành.
    Giải
    a) Gọi \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) lần lượt là đồ thị củ hàm số \(y = {a^x};\,y = {\left( {{1 \over a}} \right)^x}\), \(M\left( {{x_o},{y_o}} \right)\) là một điểm bất kì. Khi đó điểm đối xứng với M qua trục tung là \(M'\left( { - {x_o},{y_o}} \right)\).
    Ta có: \(M \in \left( {{G_1}} \right) \Leftrightarrow {y_o} = {a^{{x_o}}} \Leftrightarrow {y_o}={\left( {{1 \over a}} \right)^{ - {x_o}}} \Leftrightarrow M' \in \left( {{G_2}} \right)\)
    Điều đó chứng tỏ \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) đối xứng với nhau qua trục tung.
    b) Gọi \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) lần lượt là đồ thị củ hàm số \(y = {\log _a}x;\,\,y = {\log _{{1 \over a}}}x\)
    Lấy \(M\left( {{x_o},{y_o}} \right)\) tùy ý. Điểm đối xứng với M qua trục hoành là \(M'\left( {{x_o}, - {y_o}} \right)\).
    Ta có: \(M \in \left( {{G_1}} \right) \Leftrightarrow {y_o} = {\log _a}{x_o} = - {\log _{{1 \over a}}}{x_o} \Leftrightarrow - {y_o} = {\log _{{1 \over a}}}{x_o} \Leftrightarrow M' \in \left( {{G_2}} \right)\)
    Vậy \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) đối xứng với nhau qua trục hoành.



    Bài 61 sách giải tích 12 nâng cao trang 118.
    a) Vẽ đồ thị hàm số \(y = {\log _{0,5}}x > 0;\)
    b) \( - 3 \le {\log _{0,5}}x \le - 1\)
    Giải
    a) TXĐ: \(D = \left( {0; + \infty } \right)\)
    a = 0,5 < 1. Hàm số nghịch biến trên \(\left( {0; + \infty } \right)\).
    Bảng giá trị:
    [​IMG]
    [​IMG]
    b) \({\log _{0,5}}x > 0 \Leftrightarrow 0 < x < 1\) (ứng với phần đồ thị ở phía trên trục hoành).
    c) \( - 3 < {\log _{0,5}}x < - 1 \Leftrightarrow 2 < x \le 8\) (ứng với những điểm trên đồ thị có tung độ thuộc nửa khoảng \(\left[ { - 3;1} \right)\)).



    Bài 62 sách giải tích 12 nâng cao trang 118. Vẽ đồ thị của hàm số \(y = {\left( {\sqrt 3 } \right)^x}\). Dựa vào đồ thị, hãy giải thích các bất phương trình sau:
    a) \({\left( {\sqrt 3 } \right)^x} \le 1\);
    b) \({\left( {\sqrt 3 } \right)^x} > 3\)
    Giải
    TXĐ: \(D =\mathbb R\)
    Hàm số đồng biến trên R.
    [​IMG]
    [​IMG]
    a) \({\left( {\sqrt 3 } \right)^x} \le 1 \Leftrightarrow x \le 0\) (ứng với những điểm trên đồ thị có tung độ lớn hơn 1)
    b) \({\left( {\sqrt 3 } \right)^x} > 3 \Leftrightarrow x > 2\) (ứng với những điểm trên đồ thị có tung độ lón hơn 3).