Giải tích 12 nâng cao - Chương 4 - Bài 2. Căn bậc hai của số phức và phương trình bậc hai

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Bài 17 trang 195 SGK Giải tích 12 Nâng cao.
    Tìm các căn bậc hai của mỗi số phức sau:\( - i\);\(4i\);\( - 4\);\(1 + 4\sqrt 3 i\).
    Giải
    * Giả sử \(z=x+yi\) là căn bậc hai của \(-i\), ta có:
    \({\left( {x + yi} \right)^2} = - i \Leftrightarrow {x^2} - {y^2} + 2xyi = - i \Leftrightarrow \left\{ \matrix{ {x^2} - {y^2} = 0\,\,\left( 1 \right) \hfill \cr 2xy = - 1\,\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)
    Từ (2) suy ra \(y = - {1 \over {2x}}\) thế vào (1) ta được:
    \({x^2} - {1 \over {4{x^2}}} = 0 \Leftrightarrow {x^4} = {1 \over 4} \Leftrightarrow x = \pm {1 \over {\sqrt 2 }}\)
    +) Với \(x = {1 \over {\sqrt 2 }}\)ta có \(y = - {1 \over {2x}} = - {1 \over {\sqrt 2 }}\)
    +) Với \(x = - {1 \over {\sqrt 2 }}\)ta có \(y = - {1 \over {2x}} = {1 \over {\sqrt 2 }}\)
    Hệ có hai nghiệm là: \(\left( { - {1 \over {\sqrt 2 }},{1 \over {\sqrt 2 }}} \right),\left( {{1 \over {\sqrt 2 }}, - {1 \over {\sqrt 2 }}} \right)\)
    Vậy \(–i\) có hai căn bậc hai là: \({z_1} = - {1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i\),\({z_2} = {1 \over {\sqrt 2 }} - {1 \over {\sqrt 2 }}i\)
    * Giả sử \(z=x+yi\) là căn bậc hai của \(4i\), ta có:
    \({\left( {x + yi} \right)^2} = 4i \Leftrightarrow {x^2} - {y^2} + 2xyi = 4i \Leftrightarrow \left\{ \matrix{ {x^2} - {y^2} = 0\,\,\left( 1 \right) \hfill \cr xy = 2\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)
    Thay \(y = {2 \over x}\) vào phương trình thứ nhất ta được:
    \({x^2} - {4 \over {{x^2}}} = 0 \Leftrightarrow {x^4} = 4 \Leftrightarrow x = \pm \sqrt 2 \)
    +) Với \(x = \sqrt 2 \) ta có \(y = {2 \over x} = \sqrt 2 \);
    +) Với \(x = - \sqrt 2 \) ta có \(y = - \sqrt 2 \)
    Hệ có hai nghiệm \(\left( {\sqrt 2 ;\sqrt 2 } \right)\),\(\left( { - \sqrt 2 ; - \sqrt 2 } \right)\)
    Vậy \(4i\) có hai căn bậc hai là:\({z_1} = \sqrt 2 + \sqrt 2 i\); \({z_2} = - \sqrt 2 - \sqrt 2 i\)
    * Ta có \( - 4 = 4{i^2} = {\left( {2i} \right)^2}\) do đó \(-4\) có hai căn bậc hai là \( \pm 2i\)
    * Giả sử \(z=x+yi\) là căn bậc hai của \(1 + 4\sqrt 3 i\).
    \({\left( {x + yi} \right)^2} = 1 + 4\sqrt 3 i\)
    \( \Leftrightarrow \left\{ \matrix{ {x^2} - {y^2} = 1 \hfill \cr \,2xy = 4\sqrt 3 \, \hfill \cr} \right.\)\( \Leftrightarrow \left\{ \matrix{ y = {{2\sqrt 3 } \over x} \hfill \cr {x^2} - {{12} \over {{x^2}}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ y = {{2\sqrt 3 } \over x} \hfill \cr {x^2} = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 2 \hfill \cr y = \sqrt 3 \hfill \cr} \right.\)hoặc \(\left\{ \matrix{ x = - 2 \hfill \cr y = - \sqrt 3 \hfill \cr} \right.\)
    Hệ có hai nghiệm \(\left( {2;\sqrt 3 } \right),\left( { - 2; - \sqrt 3 } \right)\)
    Vậy \(1 + 4\sqrt 3 i\) có hai căn bậc hai là:\({z_1} = 2 + \sqrt 3 i\),\({z_2} = - 2 - \sqrt 3 i\)



    Bài 18 trang 196 SGK Giải tích 12 Nâng cao.
    Chứng minh rằng nếu \(z\) là một căn bậc hai của số phức \({\rm{w}}\) thì \(\left| z \right| = \sqrt {\left| {\rm{w}} \right|} \).
    Giải
    Giả sử \(z=x+yi\) và \(\rm{w}=a+bi\)
    \(z\) là một căn bậc hai của số phức w thì \({z^2} = {\rm{w}}\)
    \(\eqalign{
    & \Leftrightarrow {\left( {x + yi} \right)^2} = a + bi \Leftrightarrow {x^2} - {y^2} + 2xyi = a + bi \cr
    & \Leftrightarrow \left\{ \matrix{
    {x^2} - {y^2} = a \hfill \cr
    2xy = b \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    {\left( {{x^2} - {y^2}} \right)^2} = {a^2} \hfill \cr
    4{x^2}{y^2} = {b^2} \hfill \cr} \right. \cr
    & \Rightarrow {a^2} + {b^2} = {x^4} + {y^4} + 2{x^2}{y^2} = {\left( {{x^2} + {y^2}} \right)^2} \cr
    & \Leftrightarrow \sqrt {{a^2} + {b^2}} = {x^2} + {y^2} \cr} \)
    \( \Rightarrow {\left| z \right|^2} = \left| {\rm{w}} \right| \Rightarrow \left| z \right| = \sqrt {{{\left| z \right|}^2}} = \sqrt {\left| {\rm{w}} \right|} \)



    Bài 19 trang 196 SGK Giải tích 12 Nâng cao.
    Tìm nghiệm phức của các phương trình bậc hai sau:
    a) \({z^2} = z + 1\);
    b) \({z^2} + 2z + 5 = 0\)
    c) \({z^2} + \left( {1 - 3i} \right)z - 2\left( {1 + i} \right) = 0\).
    Giải
    a) Ta có \({z^2} = z + 1 \Leftrightarrow {z^2} - z = 1 \Leftrightarrow {z^2} - z + {1 \over 4} = {5 \over 4}\)
    \( \Leftrightarrow {\left( {z - {1 \over 2}} \right)^2} = {5 \over 4} \Leftrightarrow z - {1 \over 2} = \pm {{\sqrt 5 } \over 2} \Leftrightarrow z = {1 \over 2} \pm {{\sqrt 5 } \over 2}\)
    b) \({z^2} + 2z + 5 = 0 \Leftrightarrow {\left( {z + 1} \right)^2} = - 4 = {\left( {2i} \right)^2} \Leftrightarrow \left[ \matrix{ z + 1 = 2i \hfill \cr z + 1 = - 2i \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ z = - 1 + 2i \hfill \cr z = - 1 - 2i \hfill \cr} \right.\)
    Vậy \(S = \left\{ { - 1 + 2i; - 1 - 2i} \right\}\)
    c) \({z^2} + \left( {1 - 3i} \right)z - 2\left( {1 + i} \right) = 0\) có biệt thức
    \(\Delta = {\left( {1 - 3i} \right)^2} + 8\left( {1 + i} \right) = 1 - 9 - 6i + 8 + 8i = 2i = {\left( {1 + i} \right)^2}\)
    Do đó phương trình có hai nghiệm là: \({z_1} = {1 \over 2}\left[ { - 1 + 3i + \left( {1 + i} \right)} \right] = 2i\)
    \({z_2} = {1 \over 2}\left[ { - 1 + 3i - \left( {1 + i} \right)} \right] = - 1 + i\)
    Vậy \(S = \left\{ {2i; - 1 + i} \right\}\)



    Bài 20 trang 196 SGK Giải tích 12 Nâng cao.
    a) Hỏi công thức Vi-ét về phương trình bậc hai với hệ số thực có còn đúng cho phương trình bậc hai với hệ số phức không? Vì sao?
    b) Tìm hai số phức, biết tổng của chúng bằng \(4 – i\) và tích của chúng bằng \(5(1 – i)\)
    c) Có phải mọi phương trình bậc hai \({z^2} + Bz + C = 0\) (\(B, C\) là hai số phức) nhận hai nghiệm là hai số phức liên hợp không thực phải có các hệ số \(B, C\) là hai số thực? Vì sao? Điều ngược lại có đúng không?
    Giải
    a) Công thức nghiệm của phương trình bậc hai \(A{z^2} + Bz + C = 0\) là
    \(z = {{ - B \pm \delta } \over {2A}}\left( {{\delta ^2} = {B^2} - 4AC} \right)\)
    Do đó \({z_1} + {z_2} = - {B \over A}\);\({z_1}.{z_2} = {{\left( { - B - \delta } \right)\left( { - B + \delta } \right)} \over {2A.2A}} = {{{B^2} - {\delta ^2}} \over {4{A^2}}} = {{4AC} \over {4{A^2}}} = {C \over A}\)
    Vậy công thức Viét vẫn còn đúng.
    b) Giả sử \({z_1} + {z_2} = \alpha \); \({z_1}{z_2} = \beta \)
    \({z_1},{z_2}\) là hai nghiệm phương trình:
    \(\left( {z - {z_1}} \right)\left( {z - {z_2}} \right) = 0 \Leftrightarrow {z^2} - \left( {{z_1} + {z_2}} \right)z + {z_1}{z_2} = 0 \Leftrightarrow {z^2} - \alpha z + \beta = 0\)
    Theo đề bài \({z_1} + {z_2} = 4 - i\); \({z_1}{z_2} = 5\left( {1 - i} \right)\,\,\)
    nên \({z_1},{z_2}\) là hai nghiệm phương trình
    \({z^2} - \left( {4 - i} \right)z + 5\left( {1 - i} \right) = 0\) (*)
    \(\Delta = {\left( {4 - i} \right)^2} - 20\left( {1 - i} \right) = 16 - 1 - 8i - 20 + 20i = - 5 + 12i\)
    Giả sử \({\left( {x + yi} \right)^2} = - 5 + 12i \Leftrightarrow \left\{ \matrix{ {x^2} - {y^2} = - 5 \hfill \cr 2xy = 12 \hfill \cr} \right.\)
    \( \Leftrightarrow \left\{ \matrix{ {x^2} - {{36} \over {{x^2}}} = - 5 \hfill \cr y = {6 \over x} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ {x^4} + 5{x^2} - 36 = 0 \hfill \cr y = {6 \over x} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 2 \hfill \cr y = 3 \hfill \cr} \right.\,\text{ hoặc }\left\{ \matrix{ x = - 2 \hfill \cr y = - 3 \hfill \cr} \right.\)
    Vậy \(\Delta\) có hai căn bậc hai là \( \pm \left( {2 + 3i} \right)\).
    Phương trình bậc hai (*) có hai nghiệm:
    \({z_1} = {1 \over 2}\left[ {4 - i + \left( {2 + 3i} \right)} \right] = 3 + i\)
    \({z_2} = {1 \over 2}\left[ {4 - i - \left( {2 + 3i} \right)} \right] = 1 - 2i\)
    c) Nếu phương trình \({z^2} + Bz + C = 0\) có hai nghiệm \({z_1},{z_2}\) là hai số phức liên hợp, \({z_2} = \overline {{z_1}} \), thì theo công thức Vi-ét,\(B = - \left( {{z_1} + {z_2}} \right) = - \left( {{z_1} + \overline {{z_1}} } \right)\) là số thực, \(C = {z_1}{z_2} = {z_1}\overline {{z_1}} \) là số thực.
    Điều ngược lại không đúng vì nếu \(B, C\) thực thì \(\Delta = {B^2} - 4AC > 0\) hai nghiệm là số thực phân biệt, chúng không phải là liên hợp với nhau. ( Khi \(\Delta \le 0\) thì phương trình mới có hai nghiệm là hai số phức liên hợp).



    Bài 21 trang 197 SGK Đại số và Giải tích 12 Nâng cao.
    a) Giải phương trình: \(\left( {{z^2} + i} \right)\left( {{z^2} - 2iz - 1} \right) = 0\)
    b) Tìm số phức B để phương trình bậc hai \({z^2} + Bz + 3i = 0\) có tổng bình phương hai nghiệm bằng 8.
    Giải
    a) Nhận xét:\( - 2i = {\left( {1 - i} \right)^2} \Rightarrow - i = {\left( {{{1 - i} \over {\sqrt 2 }}} \right)^2}\)
    Suy ra \(–i\) có căn bậc hai \( \pm {{\sqrt 2 } \over 2}\left( {1 - i} \right)\)
    Ta có \(\left( {{z^2} + i} \right)\left( {{z^2} - 2iz - 1} \right) = 0 \Leftrightarrow \left[ \matrix{ {z^2} + i = 0 \hfill \cr {z^2} - 2iz - 1 = 0 \hfill \cr} \right.\)
    * \({z^2} + i = 0 \Leftrightarrow {z^2} = - i \Leftrightarrow z = \pm {{\sqrt 2 } \over 2}\left( {1 - i} \right)\)
    * \({z^2} - 2iz - 1 = 0 \Leftrightarrow {\left( {z - i} \right)^2} = 0 \Leftrightarrow z = i\)
    Vậy \(S = \left\{ {i;{{\sqrt 2 } \over 2}\left( {1 - i} \right); - {{\sqrt 2 } \over 2}\left( {1 - i} \right)} \right\}\)
    b) Gọi \({z_1},{z_2}\) là hai nghiệm của phương trình
    Theo giả thiết tổng bình phương hai nghiệm bằng 8 nên ta có: \({z_1}^2 + {z_2}^2 = 8\)
    Theo định lí Vi-et ta có:
    \(\left\{ \matrix{
    {z_1} + {z_2} = - B \hfill \cr
    {z_1}.{z_2} = 3i \hfill \cr} \right.\)
    \(\eqalign{
    & {z_1}^2 + {z_2}^2 = 8 \Leftrightarrow {\left( {{z_1} + {z_2}} \right)^2} - 2{z_1}.{z_2} = 8 \cr
    & \Leftrightarrow {\left( { - B} \right)^2} - 2.3i = 8 \cr
    & \Leftrightarrow {B^2} = 8 + 6i \cr
    & \Leftrightarrow {B^2} = 9 + 2.3.i + {i^2} \cr
    & \Leftrightarrow {B^2} = {\left( {3 + i} \right)^2} \cr
    & \Leftrightarrow B = \pm \left( {3 + i} \right) \cr} \)



    Bài 22 trang 197 SGK Giải tích 12 Nâng cao.
    Đố vui. Một học sinh kí hiệu một căn bậc hai của \(-1\) là \(\sqrt { - 1} \) và tính \(\sqrt { - 1} \).\(\sqrt { - 1} \) như sau:
    a) Theo định nghĩa căn bậc hai của \(-1\) thì \(\sqrt { - 1} \).\(\sqrt { - 1} = - 1\) .
    b) Theo tính chất của căn bậc hai ( tính của hai căn bậc hai của hai số bằng căn bậc hai của tích hai số đó ) thì \(\sqrt { - 1} .\sqrt { - 1} = \sqrt {\left( { - 1} \right).\left( { - 1} \right)} = \sqrt 1 = 1\)
    Từ đó, học sinh đó suy ra \(-1 = 1\)
    Hãy tìm điều sai trong lập luận trên.
    Giải
    Lập luận a) là đúng
    Lập luận b) sai ở chỗ; nếu z1 là một căn bậc hai của w1, z2 là một căn bậc hai của w2 thì \({z_1}{z_2}\) là một trong hai căn bậc hai của \({{\rm{w}}_1}{{\rm{w}}_2}\); vậy ở đây \(\sqrt { - 1} \).\(\sqrt { - 1} \) chỉ là một căn bậc hai của \(\left( { - 1} \right)\left( { - 1} \right) = 1\) (để ý rằng có hai căn bậc hai của 1 là 1 và -1), các kí hiệu \(\sqrt {\left( { - 1} \right)\left( { - 1} \right)} \) và \(\sqrt 1 \) chưa xác định.



    Bài 23 trang 199 SGK Giải tích 12 Nâng cao.
    Tìm nghiệm phức phương trình \(z + {1 \over z} = k\) trong các trường hợp sau:
    a) \(k = 1\);
    b) \(k = \sqrt 2 \)
    c) \(k = 2i\)
    Giải
    \(z + {1 \over z} = k\)
    Ta có \(z + {1 \over z} = k \Leftrightarrow {z^2} - kz + 1 = 0\)
    Phương trình có hai nghiệm là \(z = {{k \pm \delta } \over 2}\) trong đó \(\delta \) là một căn bậc hai của \(\Delta = {k^2} - 4\)
    a) Với \(k = 1\) thì \(\Delta = - 3\) khi đó \(z = {{1 \pm \sqrt 3 i} \over 2}\)
    b) Với \(k = \sqrt 2 \) thì \(\Delta = - 2\) khi đó \(z = {{\sqrt 2 \pm \sqrt 2 i} \over 2}\)\( = {{\sqrt 2 } \over 2}\left( {1 \pm i} \right)\)
    c) Với \(k = 2i\) thì \(\Delta = - 8\) khi đó \(z = {{2i \pm 2\sqrt 2 i} \over 2} = \left( {1 \pm \sqrt 2 } \right)i\)



    Bài 24 trang 199 SGK Giải tích 12 Nâng cao.
    Giải các phương trình sau trên C và biểu diễn hình hợp tập hợp các nghiệm của mỗi phương trình (trong mặt phẳng phức):
    a)\({z^3} + 1 = 0\);
    b) \({z^4} - 1 = 0\);
    c) \({z^4} + 4 = 0\);
    d) \(8{z^4} + 8{z^3} = z + 1\).
    Giải
    a) \({z^3} + 1 = 0 \Leftrightarrow \left( {z + 1} \right)\left( {{z^2} - z + 1} \right) = 0\)
    Nghiệm của \(z + 1 = 0\) là \({z_1} = - 1\)
    \({z^2} - z + 1 = 0 \Leftrightarrow {\left( {z - {1 \over 2}} \right)^2} = - {3 \over 4} = {\left( {{{\sqrt 3 } \over 2}i} \right)^2}\)
    \( \Leftrightarrow \left[ \matrix{ z = {1 \over 2} + {{\sqrt 3 } \over 2}i = {z_2} \hfill \cr z = {1 \over 2} - {{\sqrt 3 } \over 2}i = {z_3} \hfill \cr} \right.\)
    Vậy \(S = \left\{ { - 1;{1 \over 2} + {{\sqrt 3 } \over 2}i;{1 \over 2} - {{\sqrt 3 } \over 2}i} \right\}\)
    [​IMG]
    b) \({z^4} - 1 = 0 \Leftrightarrow \left( {{z^2} - 1} \right)\left( {{z^2} + 1} \right) = 0\)
    \( \Leftrightarrow \left[ \matrix{ {z^2} - 1 = 0 \hfill \cr {z^2} + 1 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ z = \pm 1 \hfill \cr z = \pm i \hfill \cr} \right.\)
    Phương trình có 4 nghiệm \({z_1} = i,{z_2} = - i,{z_3} = 1,{z_4} = - 1\)
    [​IMG]
    c) \({z^4} + 4 = 0 \Leftrightarrow \left( {{z^2} + 2i} \right)\left( {{z^2} - 2i} \right) = 0\)
    Nghiệm của \({z^2} + 2i = 0\) là các căn bậc hai của -2i, đó là \({z_1} = 1 - i\),\({z_2} = - 1 + i\)
    Nghiệm của \({z^2} - 2i = 0\) là các căn bậc hai của 2i, đó là \({z_3} = 1 + i\),\({z_4} = - 1 - i\)
    Vậy \({z^4} + 4 = 0\) có bốn nghiệm \({z_1},{z_2},{z_3},{z_4}\).
    [​IMG]
    d) \(8{z^4} + 8{z^3} = z + 1 \Leftrightarrow \left( {z + 1} \right)\left( {8{z^3} - 1} \right) = 0\)
    \( \Leftrightarrow \left( {z + 1} \right)\left( {2z - 1} \right)\left( {4{z^2} + 2z + 1} \right) = 0\)
    Nghiệm của \(z + 1 = 0\) là \({z_1} = - 1\)
    Nghiệm của \(2z - 1 = 0\) là \({z_2} = {1 \over 2}\)
    Nghiệm của \(4{z^2} + 2z + 1 = 0\) hay \({\left( {2z + {1 \over 2}} \right)^2} + {3 \over 4} = 0\)là \({z_3} = - {1 \over 4} + {{\sqrt 3 } \over 4}i\) và\({z_4} = - {1 \over 4} - {{\sqrt 3 } \over 4}i\)
    Vậy phương trình đã cho có bốn nghiệm\({z_1},{z_2},{z_3},{z_4}\)
    [​IMG]



    Bài 25 trang 199 SGK Giải tích 12 Nâng cao.
    a)Tìm các số thực b, c để phương trình (với ẩn z):
    \({z^2} + bz + c = 0\)
    nhận \(z = 1 + i\) làm một nghiệm.
    b)Tìm các số thực a, b, c để phương trình (với ẩn z):
    \({z^3} + a{z^2} + bz + c = 0\)
    nhận \(z = 1 + i\) làm nghiệm và cũng nhận \(z = 2\) là nghiệm.
    Giải
    a) \(1 + i\) là một nghiệm của phương trình \({z^2} + bz + c = 0\) khi và chỉ khi
    \({\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0 \Leftrightarrow 2i + b + bi + c = 0\)
    \( \Leftrightarrow b + c + \left( {2 + b} \right)i = 0 \Leftrightarrow \left\{ \matrix{ b + c = 0 \hfill \cr 2 + b = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ b = - 2 \hfill \cr c = 2 \hfill \cr} \right.\)
    b) \(1 + i\) là một nghiệm của \({z^3} + a{z^2} + bz + c = 0\) khi và chỉ khi
    \({\left( {1 + i} \right)^3} + a{\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0 \Leftrightarrow \left( {b + c - 2} \right)+\left( {2 + 2a + b} \right)i = 0\)
    \( \Leftrightarrow \left\{ \matrix{ b + c - 2 = 0\,\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr 2a + b + 2 = 0\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)
    \(2\) là nghiệm của \({z^3} + a{z^2} + bz + c = 0\) khi và chỉ khi \(8 + 4a + 2b + c = 0\,\,\,\left( 3 \right)\)
    Từ (1), (2), (3) ta có hệ: .\(\left\{ \matrix{ b + c = 2 \hfill \cr 2a + b = - 2 \hfill \cr 4a + 2b + c = - 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ a = - 4 \hfill \cr b = 6 \hfill \cr c = - 4 \hfill \cr} \right.\)



    Bài 26 trang 199 SGK Giải tích 12 Nâng cao.
    a) Dùng công thức cộng trong lượng giác để chứng minh rằng với mọi số thực \(\varphi \), ta có \({\left( {\cos \varphi + i\sin \varphi } \right)^2} = \cos 2\varphi + i\sin 2\varphi \).
    Từ đó hãy tìm mọi căn bậc hai của số phức \(\cos 2\varphi + i\sin 2\varphi \). Hãy so sánh cách giải này với cách giải trong bài học ở bài 2.
    b) Tìm các căn bậc hai của \({{\sqrt 2 } \over 2}\left( {1 - i} \right)\) bằng hai cách nói ở câu a).
    Giải
    a) Với mọi \(\varphi \) ta có: \({\left( {\cos \varphi + i\sin \varphi } \right)^2} = {\cos ^2}\varphi - {\sin ^2}\varphi + \left( {2\sin \varphi \cos \varphi } \right)i\)
    \( = \cos 2\varphi + i\sin 2\varphi \)
    Vậy các căn bậc hai của \(\cos 2\varphi + i\sin 2\varphi \) là \( \pm \left( {\cos \varphi + i\sin \varphi } \right)\)
    Theo cách giải trong bài học, để tìm căn bậc hai của\(\cos 2\varphi + i\sin 2\varphi \) ta giải hệ phương trình\(\left\{ \matrix{ {x^2} - {y^2} = \cos 2\varphi \hfill \cr 2xy = \sin 2\varphi \hfill \cr} \right.\)
    Rõ ràng hệ có các nghiệm \(\left( {\cos \varphi ,\sin \varphi } \right),\left( { - \cos \varphi , - \sin \varphi } \right)\) do đó\( \pm \left( {\cos \varphi + i\sin \varphi } \right)\) là hai căn bậc hai của\(\cos 2\varphi + i\sin 2\varphi \). Ta biết rằng chỉ có hai căn như thế nên đó là tất cả các căn bậc hai cần tìm.
    b) \({{\sqrt 2 } \over 2}\left( {1 - i} \right) = \cos {\pi \over 4} - i\sin {\pi \over 4} = \cos \left( { - {\pi \over 4}} \right) + i\sin \left( { - {\pi \over 4}} \right)\text{ thì theo câu a) }, {{\sqrt 2 } \over 2}\left( {1 - i} \right)\) có hai căn bậc hai là \( \pm \left( {\cos \left( {{{ - \pi } \over 8}} \right) + i\sin \left( {{{ - \pi } \over 8}} \right)} \right) = \pm \left( {\cos {\pi \over 8} - i\sin {\pi \over 8}} \right)\)
    Mà \(\eqalign{ & \cos {\pi \over 8} = \sqrt {{{1 + \cos {\pi \over 4}} \over 2}} = \sqrt {{{1 + {{\sqrt 2 } \over 2}} \over 2}} = {1 \over 2}\sqrt {2 + \sqrt 2 } \cr & \sin {\pi \over 8} = \sqrt {{{1 - \cos {\pi \over 4}} \over 2}} = \sqrt {{{1 - {{\sqrt 2 } \over 2}} \over 2}} = {1 \over 2}\sqrt {2 - \sqrt 2 } \cr} \)
    Vậy hai căn bậc hai cần tìm là \( \pm {1 \over 2}\left( {\sqrt {2 + \sqrt 2 } - i\sqrt {2 - \sqrt 2 } } \right)\)
    Còn theo bài học, việc tìm các căn bậc hai của\({{\sqrt 2 } \over 2}\left( {1 - i} \right)\) đưa về việc giải hệ phương trình\(\left\{ \matrix{ {x^2} - {y^2} = {{\sqrt 2 } \over 2} \hfill \cr 2xy = - {{\sqrt 2 } \over 2} \hfill \cr} \right.\)
    Hệ đó tương đương với \(\left\{ \matrix{ 8{x^4} - 4\sqrt 2 {x^2} - 1 = 0 \hfill \cr y = - {{\sqrt 2 } \over {4x}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ {x^2} = {{\sqrt 2 + 2} \over 4} \hfill \cr y = - {{\sqrt 2 } \over {4x}} \hfill \cr} \right.\)
    nên có các nghiệm là: \(\left( {{{\sqrt {2 + \sqrt 2 } } \over 2};{{ - \sqrt {2 - \sqrt 2 } } \over 2}} \right),\left( {{{ - \sqrt {2 + \sqrt 2 } } \over 2};{{\sqrt {2 - \sqrt 2 } } \over 2}} \right)\)
    Vậy ta lại được hai căn bậc hai đã viết ở trên.