Sách bài tập Toán 12 - Hình học 12 nâng cao - Chương III - Ôn tập chương III - Phương pháp tọa độ trong không gian

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Bài 89 trang 138 Sách bài tập Hình học lớp 12 Nâng cao.
    Dùng phương pháp hình học, giải thích các bài toán sau:
    a) Chứng minh
    \(\sqrt {5x + 2} + \sqrt {5y + 2} + \sqrt {5z + 2} \le 6\sqrt 3 ,\)
    \(\forall x,y,z \ge - {2 \over 5},x + y + z = 6.\)
    b) Chứng minh \(\left| {{\mathop{\rm s}\nolimits} {\rm{inx}} + \sqrt {2 - {{\sin }^2}x} + {\mathop{\rm s}\nolimits} {\rm{inx}}\sqrt {2 - {{\sin }^2}x} } \right| \le 3,\forall x.\)
    c) Tìm giá trị lớn nhất của tham số
    \(f(x) = \sqrt {x + m} + \sqrt {x + n} + \sqrt {m + n} \)
    Với \(x,m,n \ge 0,x + m + n = 1\)
    d) Tìm giá trị nhỏ nhất của biểu thức
    \(A = \sqrt {{{(x + 1)}^2} + {y^2} + 4} + \sqrt {{x^2} + {{(y + 1)}^2} + 1} ,\)
    \(\forall x,y.\)
    e) Chứng minh:
    \(\sqrt {{{(x - 1)}^2} + {{(y - 1)}^2} + {{(z + 1)}^2}} \)
    \(+ \sqrt {{{(x + 1)}^2} + {{(y - 1)}^2} + {{(z - 1)}^2}} \ge 2\sqrt 2 ,\forall x,y,z\)
    Dấu = xảy ra khi nào?
    Giải
    a) Xét hai vectơ :\(\overrightarrow u = \left( {1;1;1} \right)\) và \(\overrightarrow v = \left( {\sqrt {5x + 2} ;\sqrt {5y + 2} ;\sqrt {5z + 2} } \right).\)
    Ta có \(\eqalign{ & \left| {\overrightarrow u } \right| = \sqrt 3 ,\left| {\overrightarrow v } \right| = \sqrt {5(x + y + z) + 6} = 6, \cr & \overrightarrow u .\overrightarrow v = \sqrt {5x + 2} + \sqrt {5y + 2} + \sqrt {5z + 2} . \cr} \)
    Áp dụng bất đẳng thức \(\left| {\overrightarrow u .\overrightarrow v } \right| \le \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|\) suy ra đpcm.
    b) Xét hai vectơ :\(\overrightarrow u = \left( {\sin x;1;\sqrt {2 - {{\sin }^2}x} } \right)\) và \(\overrightarrow v = \left( {1;\sqrt {2 - {{\sin }^2}x} ;\sin x} \right)\)
    Từ \(\left| {\overrightarrow u .\overrightarrow v } \right| \le \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|\) suy ra đpcm.
    c) Xét hai vectơ : \(\overrightarrow u = \left( {\sqrt {x + m} ;\sqrt {x + n} ;\sqrt {m + n} } \right)\) và \(\overrightarrow v = (1;1;1).\)
    Ta có \(\left| {\overrightarrow u } \right| = \sqrt 2 \), \(\left| {\overrightarrow v } \right| = \sqrt 3 \) suy ra \(f\left( x \right) = \overrightarrow u .\overrightarrow v \le \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right| = \sqrt 6 \).
    Dấu bằng xảy ra khi \(\overrightarrow u \), \(\overrightarrow v \) cùng hướng, nghĩa là
    \({{\sqrt {x + m} } \over 1} = {{\sqrt {x + n} } \over 1} = {{\sqrt {m + n} } \over 1} > 0 \Leftrightarrow x = m = n > 0.\)
    Kết hợp với \(x + m + n = 1\) suy ra \(x = m = n = {1 \over 3}\)
    Vậy \(f\left( x \right)\) đạt giá trị lớn nhất bằng \(\sqrt 6 \) khi \(x = m = n = {1 \over 3}\)
    d) Đặt \(\overrightarrow u = \left( {x + 1;y;2} \right),\) \(\overrightarrow v = \left( { - x; - y - 1;1} \right),\) ta có \(\overrightarrow u + \overrightarrow v = {\rm{ }}\left( {1; - 1{\rm{ }};3} \right).\)
    Áp dụng bất đẳng thức \(\left| {\overrightarrow u + \overrightarrow v } \right| \le \left| {\overrightarrow u } \right| + \left| {\overrightarrow v } \right|,\) ta suy ra
    \(A = \sqrt {{{\left( {x + 1} \right)}^2} + {y^2} + 4} + \sqrt {{x^2} + {{\left( {y + 1} \right)}^2} + 1} \)
    \(\ge \sqrt {11} .\)
    Dấu bằng xảy ra khi \(\overrightarrow u ,\overrightarrow v \) cùng hướng, nghĩa là
    \({{x + 1} \over { - x}} = {y \over { - y - 1}} = {2 \over 1} > 0 \Leftrightarrow \left\{ \matrix{ x = - {1 \over 3} \hfill \cr y = - {2 \over 3}. \hfill \cr} \right.\)
    Vậy A đạt giá trị nhỏ nhất bằng \(\sqrt {11} \) khi \(x = - {1 \over 3},y = - {2 \over 3}.\)
    e) Trong không gian Oxyz, ta lấy các điểm \(A\left( {1{\rm{ }};{\rm{ 1}};{\rm{ }} - 1} \right),B\left( { - 1{\rm{ }};{\rm{ 1 }};{\rm{ 1}}} \right)\) và \(M(x;y;z).\) Khi đó\(AB = {\rm{ }}2\sqrt 2 \) và
    \(MA{\rm{ }} = {\rm{ }}\sqrt {{{(x - 1)}^2} + {\rm{ }}{{(y{\rm{ }} - 1)}^2} + {{(z + 1)}^2}} ,\)
    \(MB{\rm{ }} = {\rm{ }}\sqrt {{{(x + 1)}^2} + {\rm{ }}{{(y{\rm{ }} - 1)}^2} + {{(z - 1)}^2}} .\)
    Từ bất đẳng thức \(MA + MB \ge AB\), ta suy ra
    \(\sqrt {{{(x - 1)}^2} + {\rm{ }}{{(y{\rm{ }} - 1)}^2} + {{(z + 1)}^2}} \)
    \(+ \sqrt {{{(x + 1)}^2} + {\rm{ }}{{(y{\rm{ }} - 1)}^2} + {{(z - 1)}^2}} \ge 2\sqrt 2 .\)
    Dấu = xảy ra khi M nằm giữa hai điểm A, B hay\(\overrightarrow {AM} = t\overrightarrow {AB} \) ,\(0{\rm{ }} \le t{\rm{ }} \le 1.\)
    nghĩa là
    \(\left\{ \matrix{ x - 1 = - 2t \hfill \cr y - 1 = 0 \hfill \cr z + 1 = 2t \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 1 - 2t \hfill \cr y = 1 \hfill \cr z = - 1 + 2t \hfill \cr} \right.\) \(0{\rm{ }} \le t{\rm{ }} \le 1.\)

    Bài 90 trang 139 Sách bài tập Hình học lớp 12 Nâng cao.
    Trong không gian tọa độ Oxyz cho đường thẳng d với mặt phẳng (P) có phương trình :
    \(\eqalign{ & d:{{x - 12} \over 4} = {{y - 9} \over 3} = {{z - 1} \over 1}, \cr & (P):3x + 5y - z - 2 = 0 \cr} \)
    a) Tìm tọa độ giao điểm A của đường thẳng d với mặt phẳng (P). Tính góc giữa d và (P).
    b) Viết phương trình mặt phẳng (P’) đi qua điểm M0 (1; 2; -1) và vuông góc với đường thẳng d.
    c) Viết phương trình hình chiếu vuông góc d' của d trên mặt phẳng (P).
    d) Cho điểm B(1; 0; -1), hãy tìm tọa độ điểm B’ sao cho (P) là mặt phẳng trung trực của đoạn thẳng BB’.
    e) Viết phương trình đường thẳng \(\Delta\) nằm trong mặt phẳng (P), vuông góc và cắt đường thẳng d.
    Giải
    a) Đường thẳng d đi qua điểm (12 ; 9 ; 1) và có vectơ chỉ phương \(\overrightarrow {{u_d}} \left( {4{\rm{ }};{\rm{ }}3{\rm{ }};{\rm{ }}1} \right).\) Mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow {{n_P}} = {\rm{ }}\left( {3{\rm{ }};{\rm{ }}5{\rm{ }};{\rm{ }} - 1} \right).\)
    Vì \(\overrightarrow {{u_d}} .\overrightarrow {{n_P}} = {\rm{ }}4.3{\rm{ }} + {\rm{ }}3.5{\rm{ }} + {\rm{ 1}}.\left( { - 1} \right){\rm{ }} = {\rm{ }}26 \ne 0\) nên d cắt (P).
    Gọi A là giao điểm của d với (P), toạ độ điểm A(x ; y ; z) thoả mãn hệ
    \(\left\{ \matrix{ x = 12 + 4t \hfill \cr y = 9 + 3t \hfill \cr z = 1 + t \hfill \cr 3x + 5y - z - 2 = 0 \hfill \cr} \right. \)\(\Rightarrow t = - 3 \Rightarrow A = \left( {0;0; - 2} \right)\)
    Gọi \(\alpha \) là góc giữa đường thẳng d và mặt phẳng (P), ta có :
    \(\sin \alpha = {{\left| {\overrightarrow {{u_d}} .\overrightarrow {{n_P}} } \right|} \over {\left| {\overrightarrow {{u_d}} } \right|.\left| {\overrightarrow {{n_P}} } \right|}} = {{26} \over {\sqrt {26} .\sqrt {35} }} = {{\sqrt {26} } \over {\sqrt {35} }}.\)
    b) Mặt phẳng \(\left( P \right)\) vuông góc với d nên có vectơ pháp tuyến là vectơ chỉ phương của d. Do đó, \(\left( {P'} \right)\) có phương trình :
    \(4(x - {\rm{ }}1){\rm{ }} + {\rm{ }}3(y - {\rm{ }}2){\rm{ }} + {\rm{ }}1(z{\rm{ }} + 1){\rm{ }} = {\rm{ }}0\) hay \(4x + {\rm{ }}3y{\rm{ }} + {\rm{ }}z{\rm{ }} - {\rm{ }}9{\rm{ }} = {\rm{ }}0.\)
    c) Hình chiếu \(d'\) của \(d\) trên mp(P) là giao tuyến của mp(P) và mp\(\left( Q \right)\), với \(\left( Q \right)\) đi qua d và vuông góc với (P). Như vậy, \(\left( Q \right)\) có vectơ pháp tuyến là :
    \(\overrightarrow {{n_Q}} = \left[ {\overrightarrow {{u_d}} ,\overrightarrow {{n_P}} } \right] = \left( {\left| {\matrix{ 3 & 1 \cr 5 & { - 1} \cr } } \right|;\left| {\matrix{ 1 & 4 \cr { - 1} & 3 \cr } } \right|;\left| {\matrix{ 4 & 3 \cr 3 & 5 \cr } } \right|} \right) \)
    \(= \left( { - 8;7;11} \right).\)
    Phương trình tổng quát của mp\(\left( Q \right)\) là
    \( - 8\left( {x{\rm{ }} - {\rm{ }}12} \right){\rm{ }} + {\rm{ }}7\left( {y{\rm{ }} - {\rm{ }}9} \right){\rm{ }} + {\rm{ }}11\left( {z{\rm{ }} - {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0\)
    hay \(8x{\rm{ }} - {\rm{ }}7y - 11{\rm{ }}z{\rm{ }} - {\rm{ }}22{\rm{ }} = {\rm{ }}0.\)
    Vậy hình chiếu \(d'\) của \(d\) trên mp\(\left( P \right)\) là giao tuyến của hai mặt phẳng :
    \(3x + 5y{\rm{ }} - {\rm{ }}z{\rm{ }} - {\rm{ }}2{\rm{ }} = 0\) và \(8x{\rm{ }} - {\rm{ 7}}y{\rm{ }} - 1{\rm{1}}z{\rm{ }} - {\rm{ }}22{\rm{ }} = {\rm{ }}0.\)
    Đường thẳng d' có phương trình tham số là
    \(\left\{ \matrix{ x = 62t \hfill \cr y = - 25t \hfill \cr z = - 2 + 61t. \hfill \cr} \right.\)
    d) (P) là mặt phẳng trung trực của BB' khi và chỉ khi \(BB' \bot (P)\) và giao điểm của BB' với (P) là trung điểm của đoạn thẳng BB'.
    Ta có phương trình đường thẳng BB' là
    \(\left\{ \matrix{ x = 1 + 3t \hfill \cr y = 5t \hfill \cr z = - 1 - t. \hfill \cr} \right.\)
    Gọi H là giao điểm của BB' với (P) thì toạ độ (x ; ỵ ; z) của H thoả mãn hệ :
    \(\left\{ \matrix{ x = {\rm{ }}1{\rm{ }} + 3t \hfill \cr {\rm{ }}y = {\rm{ }}5t{\rm{ }} \hfill \cr z = {\rm{ }} - 1{\rm{ }} - t \hfill \cr 3x{\rm{ }} + {\rm{ }}5y - z - 2{\rm{ }} = {\rm{ }}0 \hfill \cr} \right. \)
    \(\Rightarrow t = - {2 \over {35}} \Rightarrow H = \left( {{{29} \over {35}}; - {2 \over 7}; - {{33} \over {35}}} \right).\)
    H là trung điểm của BB' nên
    \(\left\{ \matrix{ {x_{B'}} = 2{x_H} - {x_B} = {{23} \over {35}} \hfill \cr {y_{B'}} = 2{y_H} - {y_B} = - {4 \over 7} \hfill \cr {z_{B'}} = 2{z_H} - {z_B} = - {{31} \over {35}} \hfill \cr} \right. \Rightarrow B' = \left( {{{23} \over {35}}; - {4 \over 7}; - {{31} \over {35}}} \right)\)
    e) Đường thẳng \(\Delta \) phải tìm nằm trong mp(P), đồng thời nằm trong mặt phẳng (R) đi qua \(A\left( {0{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }} - 2} \right)\) và vuông góc với d.
    Mặt phẳng (R) có vectơ pháp tuyến \(\overrightarrow {{n_R}} = {\rm{ }}\left( {4{\rm{ }};{\rm{ }}3{\rm{ }};{\rm{ }}1} \right)\) nên có phương trình
    \(4x + {\rm{ }}3y{\rm{ }} + {\rm{ }}z{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0.\)
    Vậy \(\Delta \) là giao tuyến của hai mặt phẳng \(3x + 5y{\rm{ }} - {\rm{ }}z{\rm{ }} - {\rm{ }}2 = {\rm{ }}0\) và\(\;4x + {\rm{ }}3y{\rm{ + }}z{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0;\) suy ra \(\Delta \) có phương trình tham số là
    \(\left\{ {\matrix{ {{x } = {\rm{ 8}}t} \hfill \cr \matrix{ y{\rm{ }} = {\rm{ }} - 7t{\rm{ }} \hfill \cr z{\rm{ }} = - 2 - 11t. \hfill \cr} \hfill \cr } } \right.\)

    Bài 91 trang 139 Sách bài tập Hình học lớp 12 Nâng cao.
    Trong không gian tọa độ Oxyz cho hai mặt phẳng
    \(\eqalign{ & (\alpha ):2x - y + 3z + 1 = 0, \cr & (\alpha '):x - y + z + 5 = 0 \cr} \)
    Và điểm M(1; 5; 0).
    a) Chứng minh \((\alpha )\) và \((\alpha ')\) cắt nhau. Tính góc giữa\((\alpha )\) và \((\alpha ')\).
    b) Viết phương trình tham số của giao tuyến \(\Delta \) của \((\alpha )\) và \((\alpha ')\).
    c) Gọi hình chiếu của M trên mp \((\alpha )\), K là hình chiếu của M trên mp \((\alpha ')\). Tính độ dài đoạn HK.
    d) Tính khoảng cách từ điểm M đến đường thẳng \(\Delta \).
    e) Viết phương trình đường thẳng đi qua M , vuông góc với \(\Delta \) và cắt \(\Delta \).
    f) Viết phương trình mặt phẳng đi qua giao tuyến của \((\alpha )\) ,\((\alpha ')\) và vuông góc với mặt phẳng (P):3x - y + 1=0.
    Giải
    a) Vì \(\overrightarrow {{n_\alpha }} = {\rm{ }}\left( {2{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}3} \right),\overrightarrow {{n_{\alpha '}}} = {\rm{ }}\left( {1{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}1} \right)\) nên \(\overrightarrow {{n_\alpha }} \) và \(\overrightarrow {{n_{\alpha '}}} \) không cùng phương, do đó hai mặt phẳng (\(\alpha \)) và (\(\alpha '\)) cắt nhau.
    Gọi \(\varphi \) là góc giữa hai mặt phẳng đó, ta có :
    \(\cos \varphi = {{\left| {\overrightarrow {{n_\alpha }} .\overrightarrow {{n_{\alpha '}}} } \right|} \over {\left| {\overrightarrow {{n_\alpha }} } \right|.\left| {\overrightarrow {{n_{\alpha '}}} } \right|}}\)
    \(= {{\left| {2.1 + \left( { - 1} \right).\left( { - 1} \right) + 3.1} \right|} \over {\sqrt {4 + 1 + 9} .\sqrt {1 + 1 + 1} }} = {6 \over {\sqrt {14} .\sqrt 3 }} = {{2\sqrt 3 } \over {\sqrt {14} }}\)
    b) \(M(x;y\;;z)\) thuộc \(\Delta \) khi và chỉ khi toạ độ của M thoả mãn hệ phương trình :
    \(\left\{ \matrix{ 2x{\rm{ }} - y + {\rm{ }}3z{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \hfill \cr x{\rm{ }} - y + z + {\rm{ }}5{\rm{ }} = {\rm{ }}0. \hfill \cr} \right.\)
    Đặt z = t, ta có
    \(\left\{ \matrix{ 2x{\rm{ }} - y = {\rm{ }} - 1{\rm{ }} - 3t{\rm{ }} \hfill \cr x{\rm{ }} - y = {\rm{ }} - 5{\rm{ }} - t \hfill \cr} \right. \Rightarrow \left\{ \matrix{ x = 4 - 2t \hfill \cr y = 9 - t. \hfill \cr} \right.\)
    Vậy phương trình tham số của đường thẳng \(\Delta \) là
    \(\left\{ \matrix{ x{\rm{ }} = 4{\rm{ }} - 2t{\rm{ }} \hfill \cr {\rm{y }} = {\rm{ }}9 - t \hfill \cr z{\rm{ }} = {\rm{ }}t. \hfill \cr} \right.\)
    c) Vì H là giao điểm của đường thẳng đi qua M, vuông góc với \(\left( \alpha \right)\) nên toạ độ \((x{\rm{ }};y;{\rm{ }}z)\) của H thoả mãn hệ :
    \(\left\{ {\matrix{ {x{\rm{ }} = {\rm{ }}1{\rm{ }} + {\rm{ }}2t} \hfill \cr {y{\rm{ }} = {\rm{ }} - t} \hfill \cr {z{\rm{ }} = {\rm{ }}5{\rm{ }} + {\rm{ }}3t} \hfill \cr {2x{\rm{ }} - y + {\rm{ }}3z{\rm{ }} + {\rm{ }}1{\rm{ }} = 0} \hfill \cr } } \right. \)
    \(\Rightarrow t = - {9 \over 7} \Rightarrow H = \left( { - {{11} \over 7};{9 \over 7};{8 \over 7}} \right).\)
    Vì K là giao điểm của đường thẳng đi qua M, vuông góc với \(\left( {\alpha '} \right)\) nên toạ độ \((x{\rm{ }};y;{\rm{ }}z)\) của K thoả mãn hệ :
    \(\left\{ {\matrix{ {x{\rm{ }} = 1 + {\rm{ }}t} \hfill \cr {y{\rm{ }} = - t} \hfill \cr {z{\rm{ }} = 5 + {\rm{ }}t} \hfill \cr {x{\rm{ }} - {\rm{ }}y{\rm{ }} + {\rm{ }}z + 5 = 0} \hfill \cr } } \right. \)
    \(\Rightarrow t = - {{11} \over 3} \Rightarrow K = \left( { - {8 \over 3};{{11} \over 3};{4 \over 3}} \right).\)
    Vậy \(HK = \sqrt {{{\left( { - {8 \over 3} + {{11} \over 7}} \right)}^2} + {{\left( {{{11} \over 3} - {9 \over 7}} \right)}^2} + {{\left( {{4 \over 3} - {8 \over 7}} \right)}^2}} \)
    \( = \sqrt {{{\left( {{{23} \over {21}}} \right)}^2} + {{\left( {{{50} \over {21}}} \right)}^2} + {{\left( {{4 \over {21}}} \right)}^2}} = {{\sqrt {3045} } \over {21}}.\)
    d) \(\Delta \) là đường thẳng đi qua \({M_o}\left( {4{\rm{ }};{\rm{ }}9{\rm{ }};{\rm{ }}0} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_\Delta }} = \left( { - 2; - 1;1} \right).\)
    Ta có \(\overrightarrow {{M_o}M} = {\rm{ }}\left( { - 3{\rm{ }};{\rm{ }} - 9{\rm{ }};{\rm{ }}5} \right),\) suy ra
    \(\left[ {\overrightarrow {{M_o}M} ,\overrightarrow {{u_\Delta }} } \right] = \left( {\left| {\matrix{ { - 9} & 5 \cr { - 1} & 1 \cr } } \right|;\left| {\matrix{ 5 & { - 3} \cr 1 & { - 2} \cr } } \right|;\left| {\matrix{ { - 3} & { - 9} \cr { - 2} & { - 1} \cr } } \right|} \right) \)
    \(= {\rm{ }}\left( { - 4{\rm{ }};{\rm{ }} - 7{\rm{ }};{\rm{ }} - 15} \right).\)
    Vậy
    \(d(M,\Delta ){\rm{ }} = {{\left| {\left[ {\overrightarrow {{M_o}M} ,\overrightarrow {{u_\Delta }} } \right]} \right|} \over {\left| {\overrightarrow {{u_\Delta }} } \right|}} \)
    \(= \;{{\sqrt {{{\left( { - 4} \right)}^2} + {\rm{ }}{{\left( { - 7} \right)}^2} + {\rm{ }}{{\left( { - 15} \right)}^2}\;} } \over {\sqrt {\;{{\left( { - 2} \right)}^2} + {\rm{ }}{{\left( { - 1} \right)}^2} + {1^2}} }} = {{\sqrt {145} } \over {\sqrt 3 }}.\)
    e) Gọi (\(\beta \)) là mặt phẳng đi qua M và vuông góc với \(\Delta \). Phương trình của (\(\beta \)) là
    \( - 2(x{\rm{ }} - 1){\rm{ }} - {\rm{ }}1{\rm{ }}\left( {y{\rm{ }} - {\rm{ }}0} \right){\rm{ }} + {\rm{ }}1{\rm{ }}\left( {z{\rm{ }} - {\rm{ }}5} \right){\rm{ }} = {\rm{ }}0\)
    hay \(2x{\rm{ }} + {\rm{ }}y - {\rm{ }}z{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}0.\)
    Gọi J(x ; y ; z) là giao điểm của đường thẳng \(\Delta \) với mặt phẳng (\(\beta \)).
    Toạ độ của J thoả mãn hệ
    \(\left\{ {\matrix{ \matrix{ x = {\rm{ }}4{\rm{ }} - 2t{\rm{ }} \hfill \cr {\rm{y }} = {\rm{ }}9{\rm{ }} - t \hfill \cr {\rm{ }}z{\rm{ }} = {\rm{ }}t \hfill \cr} \hfill \cr {2x{\rm{ }} + {\rm{ }}y - {\rm{ }}z{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}0} \hfill \cr } } \right.\)
    \(\Rightarrow t = {{10} \over 3} \Rightarrow J = \left( { - {8 \over 3};{{17} \over 3};{{10} \over 3}} \right).\)
    MJ chính là đường thẳng qua M, vuông góc và cắt đường thẳng \(\Delta \); nó có phương trình chính tắc là
    \({{x - 1} \over {11}} = {y \over { - 17}} = {{z - 5} \over 5}.\)
    g) Gọi (R) là mặt phẳng qua \(\Delta \) (giao tuyến của \(\left( \alpha \right)\) và \(\left( {\alpha '} \right)\)) và vuông góc với mp(P): \(3x{\rm{ }} - y + {\rm{ }}1{\rm{ }} = {\rm{ }}0.\) Mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow {{n_P}} = {\rm{ }}\left( {3{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}0} \right).\)
    Khi đó (R) đi qua điểm Mơ = (4 ; 9 ; 0) và có vectơ pháp tuyến
    \(\overrightarrow {{n_R}} = \left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right] \)
    \(= \left( {\left| {\matrix{ { - 1} & 1 \cr { - 1} & 0 \cr } } \right|;\left| {\matrix{ 1 & { - 2} \cr 0 & 3 \cr } } \right|;\left| {\matrix{ { - 2} & { - 1} \cr 3 & { - 1} \cr } } \right|} \right)\)
    \(= \left( {1;3;5} \right).\)
    Vậy phương trình của mp(R) là
    \(1(x{\rm{ }} - 4){\rm{ }} + {\rm{ }}3\left( {y{\rm{ }} - {\rm{ }}9} \right){\rm{ }} + {\rm{ }}5\left( {z{\rm{ }} - {\rm{ }}0} \right){\rm{ }} = {\rm{ }}0\)
    \(\Leftrightarrow x + {\rm{ }}3y{\rm{ }} + {\rm{ }}5z{\rm{ }} - {\rm{ }}31{\rm{ }} = 0.\)

    Bài 92 trang 140 Sách bài tập hình học lớp 12 nâng cao.
    Trong không gian tọa độ Oxyz cho đường thẳng :
    \(\Delta :\left\{ \matrix{ x = 3 + t \hfill \cr y = - 1 + 2t \hfill \cr z = 4 \hfill \cr} \right.\)
    Gọi \(\Delta '\) là giao tuyến của 2 mặt phẳng:
    \((\alpha ):x - 3y + z = 0\) và \((\alpha '):x + y - z + 4 = 0\)
    và điểm M0 (1; 1; 2).
    a) Xét vị trí tương đối của 2 đường thẳng \(\Delta\) và \(\Delta '\) .
    b) Viết phương trình mặt phẳng chứa \(\Delta '\) song song với \(\Delta \) .
    c) Viết phương trình mặt phẳng qua M0 và vuông góc với \(\Delta \) .
    d) Viết phương trình đường thẳng qua M0, cắt cả \(\Delta\) và \(\Delta '\) .
    e) Tính khoảng cách giữa \(\Delta\) và \(\Delta '\) .
    f) Viết phương trình đường thẳng vuông góc chung của \(\Delta\) và \(\Delta '\) .
    Giải
    a) Đường thẳng \(\Delta \) đi qua \({N_o}\left( {3{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}4} \right)\) và có vectơ chỉ phương \(\overrightarrow u \left( {1;{\rm{ }}2;{\rm{ }}0} \right).\)
    Đường thẳng \(\Delta '\) đi qua \(N_o'( - 2;{\rm{ }}0{\rm{ }};{\rm{ }}2)\) và có vectơ chỉ phương
    \(\overrightarrow {u'} = \left( {\left| {\matrix{ { - 3} & 1 \cr 1 & { - 1} \cr } } \right|;\left| {\matrix{ 1 & 1 \cr { - 1} & 1 \cr } } \right|;\left| {\matrix{ 1 & { - 3} \cr 1 & 1 \cr } } \right|} \right) = {\rm{ }}\left( {2{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ }}4} \right)\)
    Ta có \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = {\rm{ }}\left( {8{\rm{ }};{\rm{ }} - 4{\rm{ }};{\rm{ }} - 2} \right),\overrightarrow {{N_o}N_o'} = {\rm{ }}\left( { - 5{\rm{ }};{\rm{ }}1{\rm{ }};{\rm{ }} - 2} \right),\) suy ra
    \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {{N_o}N_o'} = {\rm{ }}8\left( { - 5} \right){\rm{ }} + {\rm{ }}\left( { - 4} \right).{\rm{ }}1{\rm{ }} - {\rm{ }}2\left( { - 2} \right){\rm{ }}\)
    \(= {\rm{ }} - 40{\rm{ }} \ne {\rm{ }}0.\)
    Vậy \(\Delta \) và \(\Delta \)' chéo nhau.
    b) Gọi (P) là mặt phẳng chứa \(\Delta \)' và song song với \(\Delta \), khi đó (P) đi qua điểm \(N_o'\left( { - 2;0;2} \right) \in \Delta '\) và có vectơ pháp tuyến \(\overrightarrow {{n_P}} = {1 \over 2}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {4; - 2; - 1} \right).\)
    Vậy phương trình mp(P) là :
    \(4\left( {x{\rm{ }} + {\rm{ }}2} \right){\rm{ }} - 2(y - {\rm{ }}0){\rm{ }} - {\rm{ 1}}\left( {z{\rm{ }} - {\rm{ }}2} \right){\rm{ }} = {\rm{ }}0\) hay \(4x{\rm{ }} - {\rm{ }}2y{\rm{ }} - z{\rm{ }} + {\rm{ }}10{\rm{ }} = {\rm{ }}0.\)
    c) Gọi d là mặt phẳng qua \({M_o}\left( {{\rm{ }}1{\rm{ }};{\rm{ }}1{\rm{ }};{\rm{ }}2} \right)\) và vuông góc với \(\Delta \). Khi đó, (Q) nhận vectơ \(\overrightarrow u = {\rm{ }}\left( {1{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ }}0} \right)\) làm vectơ pháp tuyến. Vậy (Q) có phương trình :
    \(1{\rm{ }}\left( {x - {\rm{ }}1} \right){\rm{ }} + {\rm{ }}2\left( {y{\rm{ }} - {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0\) hay \(x + {\rm{ }}2y{\rm{ }} - {\rm{ }}3{\rm{ }} = {\rm{ }}0.\)
    d) Gọi d là đường thẳng qua Mo, cắt cả \(\Delta \) và \(\Delta \)'. Khi đó, d là giao tuyến của hai mặt phẳng \(\left( \beta \right) = {\rm{ }}({M_o},\Delta )\) và \(\left( {\beta '} \right) = {\rm{ }}({M_o},\Delta ')\)
    Mặt phẳng \(\left( \beta \right)\) đi qua \({M_o}\left( {1;{\rm{ }}1;{\rm{ }}2} \right)\) và có vectơ pháp tuyến \(\overrightarrow {{n_\beta }} = \left[ {\overrightarrow {{M_o}{N_o}} ,\overrightarrow u } \right].\)
    Ta có \(\overrightarrow {{M_o}{N_o}} = {\rm{ }}\left( {2{\rm{ }};{\rm{ }} - 2{\rm{ }};{\rm{ }}2} \right),\overrightarrow u = {\rm{ }}\left( {1{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ }}0} \right),\) suy ra
    \(\overrightarrow {{n_\beta }} = \left( {\left| {\matrix{ { - 2} & 2 \cr 2 & 0 \cr } } \right|;\left| {\matrix{ 2 & 2 \cr 0 & 1 \cr } } \right|;\left| {\matrix{ 2 & { - 2} \cr 1 & 2 \cr } } \right|} \right) = {\rm{ }}\left( { - 4{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ }}6} \right).\)
    Vậy phương trình mp(\(\beta \)) là :
    \( - 4(x - 1) + {\rm{ }}2\left( {y{\rm{ }} - {\rm{ }}1} \right){\rm{ }} + {\rm{ }}6\left( {z{\rm{ }} - {\rm{ }}2} \right){\rm{ }} = {\rm{ }}0\) hay \( - 2x + {\rm{ }}y{\rm{ }} + {\rm{ }}3z{\rm{ }} - {\rm{ }}5{\rm{ }} = {\rm{ }}0.\)
    Mặt phẳng (\(\beta \)) đi qua \({M_o}\left( {1;{\rm{ }}1;{\rm{ }}2} \right)\) và có vectơ pháp tuyến \(\overrightarrow {{n_{\beta '}}} = \left[ {\overrightarrow {{M_o}N_o'} ,\overrightarrow {u'} } \right].\)
    Ta có \(\overrightarrow {{M_o}N_o'} = {\rm{ }}\left( { - 3{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}0} \right),\overrightarrow {u'} {\rm{ }} = {\rm{ }}(2;{\rm{ }}2{\rm{ }};{\rm{ }}4),\) suy ra
    \(\left[ {\overrightarrow {{M_o}N_o'} ,\overrightarrow {u'} } \right] = \left( {\left| {\matrix{ { - 1} & 0 \cr 2 & 4 \cr } } \right|;\left| {\matrix{ 0 & { - 3} \cr 4 & 2 \cr } } \right|;\left| {\matrix{ { - 3} & { - 1} \cr 2 & 2 \cr } } \right|} \right) \)
    \(= \left( { - 4;12; - 4} \right).\)
    Ta chọn một vectơ pháp tuyến khác của (\(\beta '\)) là (1 ; -3 ; 1), từ đó (\(\beta '\)) có phương trình là :
    \(1.(x - {\rm{ }}1){\rm{ }} - {\rm{ }}3\left( {y{\rm{ }} - {\rm{ }}1} \right) + 1\left( {z{\rm{ }} - {\rm{ }}2} \right) = 0\) hay \(x - {\rm{ }}3y + z = 0.\)
    Dễ thấy rằng đường thẳng d là giao tuyến của hai mặt phẳng \( - 2x + {\rm{ }}y{\rm{ }} + 3z - 5 = {\rm{ }}0\) và \(x{\rm{ }} - {\rm{ }}3y{\rm{ }} + {\rm{ }}z{\rm{ }} = {\rm{ }}0\) thoả mãn bài toán. Do đó, phương trình tham số của d là
    \(\left\{ \matrix{ x = {\rm{ }} - 3{\rm{ }} + {\rm{ }}2t \hfill \cr \;y = {\rm{ }} - 1{\rm{ }} + t \hfill \cr {\rm{ }}z{\rm{ }} = {\rm{ }}t. \hfill \cr} \right.\)
    Dễ thấy d cắt cả \(\Delta \) và \(\Delta \)'.
    e) \(d\left( {\Delta ,\Delta '} \right) = {{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {{N_o}N_o'} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}} = {{20} \over {\sqrt {21} }}.\)
    g) Gọi đường vuông góc chung của \(\Delta \) và \(\Delta \)' là \(\delta \). Khi đó, vectơ chỉ phương của \(\delta \) là \(\overrightarrow {{u_\delta }} = {1 \over 2}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {4; - 2; - 1} \right).\)
    Gọi (\({\beta _1}\)) là mp\(\left( {\Delta ,\delta } \right)\) thì (\({\beta _1}\)) đi qua No và có vectơ pháp tuyến
    \(\overrightarrow {{n_1}} = \left[ {\overrightarrow u ,\overrightarrow {{u_\delta }} } \right] = \left( { - 2;1; - 10} \right).\)
    Vậy phương trình của (\({\beta _1}\)) là
    \( - 2(x - {\rm{ }}3){\rm{ }} + {\rm{ }}1\left( {y{\rm{ }} + {\rm{ }}1} \right){\rm{ }} - 10\left( {z{\rm{ }} - {\rm{ }}4} \right){\rm{ }} = {\rm{ }}0\) hay \(2x{\rm{ }} - {\rm{ }}y{\rm{ }} + 10z{\rm{ }} - {\rm{ }}47{\rm{ }} = {\rm{ }}0.\)
    Gọi (\({\beta _2}\)) là mp\(\left( {\Delta ',\delta } \right)\) thì (\({\beta _2}\)) đi qua \(N_o'\) và có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \;\left[ {\overrightarrow {u'} ,\overrightarrow {{u_\delta }} } \right]\; = {\rm{ }}\left( {6;{\rm{ }}18;{\rm{ }} - {\rm{ }}12} \right).\)
    Vậy (\({\beta _2}\)) có phương trình là
    (\({\beta _2}\)) : \(x + {\rm{ }}3y{\rm{ }} - {\rm{ }}2z{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0.\)
    Do đó, đường vuông góc chung \(\delta \) của \(\Delta \) và \(\Delta \)' là giao tuyến của hai mặt phẳng \( 2x - {\rm{ }}y + 10z - {\rm{ }}47 = {\rm{ }}0\) và \(x{\rm{ }} + 3y - 2z + 6 = {\rm{ }}0.\)
    Phương trình tham số của \(\delta \) là \(\left\{ \matrix{ x = {{23} \over 7} - 4t \hfill \cr y = - {3 \over 7} + 2t \hfill \cr z{\rm{ }} = {\rm{ }}4{\rm{ }} + t. \hfill \cr} \right.\)

    Bài 93 trang 140 Sách bài tập Hình học lớp 12 Nâng cao.
    Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\)
    a) Chứng minh A, B, C, D là bốn đỉnh của 1 tứ diện.
    b) Tính thể tích khối tứ diện ABCD.
    c) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD
    d) Tìm tọa độ các giao điểm M, N của đường thẳng d với mặt cầu (S).
    e) Viết phương trình các mặt phẳng tiếp xúc với mặt cầu (S) tại M, N. Tính góc tạo bởi hai mặt phẳng đó.
    Giải
    a) Ta có \(\overrightarrow {AB} = {\rm{ }}\left( {2{\rm{ }};{\rm{ }}3{\rm{ }};{\rm{ }} - 1} \right),\overrightarrow {AC} = {\rm{ }}\left( {7{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }} - 7} \right),\)suy ra
    \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\matrix{ 3 & { - 1} \cr 0 & { - 7} \cr } } \right|;\left| {\matrix{ { - 1} & 2 \cr { - 7} & 7 \cr } } \right|;\left| {\matrix{ 2 & 3 \cr 7 & 0 \cr } } \right|} \right) \)
    \(= ( - 21;7; - 21).\)
    Lại có \(\overrightarrow {AD} = {\rm{ }}\left( {0{\rm{ }};{\rm{ }}7{\rm{ }};{\rm{ }} - 7} \right)\)nên \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} = {\rm{ }}49{\rm{ }} + {\rm{ }}147 \ne 0\)
    Do đó A, B, C, D là các đỉnh của một tứ diện.
    b) \({V_{ABCD}} = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = {{196} \over 6} = {{98} \over 3}.\)
    Gọi \(I(x{\rm{ }};y;z)\) là tâm của mặt cầu ngoại tiếp tứ diện, ta có :
    \(\left\{ \matrix{ I{A^2} = I{B^2} \hfill \cr {IA^2} = I{C^2} \hfill \cr {IA^2} = I{D^2}. \hfill \cr} \right.\)
    Từ đó suy ra \(x = - 2,y = 1,z{\rm{ }} = - 5.\)Vậy \(I = {\rm{ }}\left( { - 2{\rm{ }};{\rm{ }}1; - 5} \right)\) và R = IA = 7.
    Do đó, mặt cầu (S) ngoại tiếp tứ diện ABCD có phương trình :
    \(\left( S \right){\rm{ }}:{\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}{\rm{ }} + {\rm{ }}{(y - {\rm{ }}1)^2} + {(z{\rm{ }} + 5)^2} = {\rm{ }}49.\)
    d) Dạng tham số của đường thẳng d là :
    \(\left\{ \matrix{ x{\rm{ }} = - 5{\rm{ }} + {\rm{ }}3t \hfill \cr y = {\rm{ }} - 11{\rm{ }} + 5t \hfill \cr z = {\rm{ }}9{\rm{ }} - 4t. \hfill \cr} \right.\)
    Toạ độ \(\left( {x;y;{\rm{ }}z} \right)\) của giao điểm của d và (S) thoả mãn hệ :
    \(\left\{ \matrix{ x{\rm{ }} = - 5{\rm{ }} + {\rm{ }}3t \hfill \cr y = {\rm{ }} - 11{\rm{ }} + 5t \hfill \cr z = {\rm{ }}9{\rm{ }} - 4t. \hfill \cr {\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}{\rm{ }} + {\rm{ }}{(y - {\rm{ }}1)^2} + {(z{\rm{ }} + 5)^2} = {\rm{ }}49. \hfill \cr} \right.\)
    \(\eqalign{ & = > {\left( {3t{\rm{ }} - {\rm{ }}3} \right)^2} + {\rm{ }}{\left( {5t - {\rm{ }}12} \right)^2} + {( - {\rm{ }}4t + 14)^2} = 49 \cr & \Leftrightarrow {t^2} - 5t + 6 = 0 \Leftrightarrow \left[ \matrix{ t = 2 \hfill \cr t = 3. \hfill \cr} \right. \cr} \)
    +) Khi t = 2 thì \(x = {\rm{ }}1{\rm{ }};{\rm{ }}y{\rm{ }} = - 1{\rm{ }};{\rm{ }}z{\rm{ }} = {\rm{ }}1\), ta được điểm \(M\left( {1{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}1} \right).\)
    +) Khi t = 3 thì \(x{\rm{ }} = {\rm{ }}4{\rm{ }};y = {\rm{ }}4{\rm{ }};{\rm{ }}z{\rm{ }} = - 3\), ta được điểm \(N\left( {4{\rm{ }};{\rm{ }}4{\rm{ }}; - 3} \right).\)
    Vậy cắt (S) tại hai điểm \(M\left( {1{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}1} \right).\) và \(N\left( {4{\rm{ }};{\rm{ }}4{\rm{ }}; - 3} \right).\)
    e) Gọi (P) là mặt phẳng tiếp xúc với mặt cầu (S) tại M. Khi đó, (P) đi qua điểm \(M\left( {1{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}1} \right).\) và có vectơ pháp tuyến \(\overrightarrow {{n_p}} = \overrightarrow {IM} = {\rm{ }}\left( {3{\rm{ }}; - 2{\rm{ }};{\rm{ }}6} \right).\)
    Vậy phương trình của (P) là:
    \(3\left( {x{\rm{ }} - {\rm{ }}1} \right){\rm{ }} - 2(y{\rm{ }} + 1){\rm{ }} + {\rm{ }}6\left( {z{\rm{ }} - {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0\)
    \(\Leftrightarrow 3x - 2y + 6z - 11 = 0.\)
    Gọi (Q) là mặt phẳng tiếp xúc với (S) tại N. Khi đó, mp(Q) đi qua điểm \(N\left( {4{\rm{ }};{\rm{ }}4{\rm{ }}; - 3} \right)\) và có vectơ pháp tuyến \(\overrightarrow {{n_Q}} = \overrightarrow {IN} = \left( {6{\rm{ }};{\rm{ }}3{\rm{ }};{\rm{ }}2} \right).\)
    Vậy phương trình của (Q) là :
    \(6(x - {\rm{ }}4) + 3\left( {y{\rm{ }} - {\rm{ }}4} \right) + {\rm{ }}2\left( {z{\rm{ }} + {\rm{ }}3} \right) = 0\)
    \(\Leftrightarrow 6x + 3y + 2z - 30 = 0.\)
    Gọi \(\varphi \)là góc giữa hai mặt phẳng (P) và (Q), ta có
    \(\cos \varphi = {{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right|} \over {\left| {\overrightarrow {{n_P}} } \right|\left| {\overrightarrow {{n_Q}} } \right|}} = {{\left| {18 - 6 + 12} \right|} \over {\sqrt {9 + 4 + 36} .\sqrt {36 + 9 + 4} }} = {{24} \over {49}}.\)

    Bài 94 trang 140 Sách bài tập Hình học lớp 12 Nâng cao.
    Cho hình lập phương ABCD.ABCD cạnh bằng a. Xét hai điểm M trên AD’ và N trên DB sao cho AM= DN= k (0< k <a\(\sqrt 2 \) ). Gọi P là trung điểm B’C’.
    a) Tính cos của góc giữa hai đường thẳng AP và BC’.
    b) Tính thể tích khối tứ diện APBC’.
    c) Chứng minh MN luôn song song với mặt phẳng (A’D’CB) khi k thay đổi.
    d) Tìm k để đoạn MN ngắn nhất.
    e) Khi đoạn MN ngắn nhất, chứng minh rằng MN là đường vuông góc chung của AD’ và DB, đồng thời MN song song với A’C.
    Giải
    Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA' (h.105).
    01.jpg
    Khi đó :
    \(\eqalign{ & A = \left( {0;0;0} \right) \cr & B = \left( {a;0;0} \right) \cr & D = \left( {0;a;0} \right) \cr & C = \left( {a;a;0} \right) \cr} \) \(\eqalign{ & A' = \left( {0;0;a} \right) \cr & B' = \left( {a;0;a} \right) \cr & D' = \left( {0;a;a} \right) \cr & C' = \left( {a;a;a} \right) \cr} \)
    \(P = \left( {a;{a \over 2};a} \right)\)
    a) Ta có \(\overrightarrow {AP} = \left( {a;{a \over 2};a} \right)\)
    \(\overrightarrow {BC'} = \left( {0;a;a} \right).\)
    Gọi \(\alpha \) là góc giữa hai đường thẳng \(AP\) và \(BC'\) ta có :
    \(\cos \alpha = {{\left| {0 + {{{a^2}} \over 2} + {a^2}} \right|} \over {\sqrt {{a^2} + {{{a^2}} \over 2} + {a^2}} .\sqrt {{a^2} + {a^2}} }} = {1 \over {\sqrt 2 }} \Rightarrow \alpha = {45^o}\)
    b) Ta có : \(\overrightarrow {AP} = \left( {a;{a \over 2};a} \right)\), \(\overrightarrow {AB} = {\rm{ }}\left( {a;0;0} \right),\overrightarrow {AC'} = (a;a;a)\)
    \(\eqalign{ & \Rightarrow \left[ {\overrightarrow {AP} ,\overrightarrow {AB} } \right] = \left( {\left| {\matrix{ {{a \over 2}} & a \cr 0 & 0 \cr } } \right|;\left| {\matrix{ a & a \cr 0 & a \cr } } \right|;\left| {\matrix{ a & {{a \over 2}} \cr a & 0 \cr } } \right|} \right) \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \left( {0;{a^2}; - {{{a^2}} \over 2}} \right) \cr & \Rightarrow \left[ {\overrightarrow {AP} ,\overrightarrow {AB} } \right].\overrightarrow {AC'} = 0 + {a^3} - {{{a^3}} \over 2} = {{{a^3}} \over 2}. \cr} \)
    Vậy \({V_{APBC'}} = {1 \over 6}\left| {\left[ {\overrightarrow {AP} ,\overrightarrow {AB} } \right].\overrightarrow {AC'} } \right| = {1 \over 6}.{{{a^3}} \over 2} = {{{a^3}} \over {12}}.\)
    c) Mặt phẳng \(\left( {A'D'CB} \right)\) song song với trục Oy nên có phương trình :
    \(px{\rm{ }} + {\rm{ }}qz{\rm{ }} + {\rm{ }}n{\rm{ }} = 0\) \(\left( {n \ne 0,{p^2} + {q^2} > 0} \right).\)
    Vì mặt phẳng này đi qua \(A',B,C\) nên ta xác định được p = q và n = -pa.
    Cho p = 1, ta được phương trình mp\(\left( {A'D'CB} \right)\) là \(x + z - {\rm{ }}a = {\rm{ }}0\). Vectơ pháp tuyến của mặt phẳng này là \(\overrightarrow n = {\rm{ }}\left( {1{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }}1} \right).\)
    Từ giả thiết \(M \in AD',{\rm{ }}N \in DB;{\rm{ }}AM = {\rm{ }}DN = k\), ta tính được :
    \(M = \left( {0;{k \over {\sqrt 2 }};{k \over {\sqrt 2 }}} \right),N = \left( {{k \over {\sqrt 2 }};{{a\sqrt {2 } -k} \over {\sqrt 2 }};0} \right).\)
    Suy ra \(\overrightarrow {MN} = \left( {{k \over {\sqrt 2 }};{{a\sqrt {2 } -2k} \over {\sqrt 2 }}; - {k \over {\sqrt 2 }}} \right).\)
    Ta có \(\overrightarrow {MN} .\overrightarrow n = 1.{k \over {\sqrt 2 }} + 0\left( {{{a\sqrt {2 }-2 k} \over {\sqrt 2 }}} \right) + 1.\left( { - {k \over {\sqrt 2 }}} \right) = 0\)
    \(\Rightarrow \overrightarrow {MN} \bot \overrightarrow n .\)
    Rõ ràng \(N \notin mp\left( {A'D'CB} \right).\) Suy ra MN song song với mp\(\left( {A'D'CB} \right).\)
    d) Ta có \(M{N^2} = {\left( {{k \over {\sqrt 2 }}} \right)^2} + {\left( {{{a\sqrt {2 }-2 k} \over {\sqrt 2 }}} \right)^2} + {\left( { - {k \over {\sqrt 2 }}} \right)^2}.\)
    \(\eqalign{ & = 3{k^2} - 2a\sqrt 2 k + {a^2} \cr & = 3\left[ {{{\left( {k - {{a\sqrt 2 } \over 3}} \right)}^2} + {{{a^2}} \over 9}} \right] \ge 3{{{a^2}} \over 9} = {{{a^2}} \over 3}. \cr} \)
    \(M{N^2}\) nhỏ nhất bằng \({{{a^2}} \over 3}\) khi \(k = {{a\sqrt 2 } \over 3}\) (thoả mãn điều kiện \(0{\rm{ }} < k{\rm{ }} < {\rm{ }}a\sqrt 2 \) ).
    Vậy MN ngắn nhất bằng \({{a\sqrt 3 } \over 3}\) khi \(k = {{a\sqrt 2 } \over 3}\).
    e) Khi MN ngắn nhất thì \(k = {{a\sqrt 2 } \over 3}\) Khi đó \(\overrightarrow {MN} = \left( {{a \over 3};{a \over 3};{{ - a} \over 3}} \right).\)
    Ta lại có \(\overrightarrow {AD'} = {\rm{ }}\left( {0;a;{\rm{ }}a} \right),\overrightarrow {DB} {\rm{ }} = (a; - a;0)\) nên \(\overrightarrow {MN} .\overrightarrow {AD'} = {\rm{ }}0,\overrightarrow {MN} .\overrightarrow {DB} = {\rm{ }}0.\)
    Vậy MN là đường vuông góc chung của AD' và DB.
    Mặt khác \(\overrightarrow {A'C} = \left( a;a; - a\right) = 3\overrightarrow {MN} \), chứng tỏ \(\overrightarrow {MN} \), \(\overrightarrow {A'C} \) cùng phương. Do \(N \not\in A'C\) nên \(MN//A'C.\)

    Bài 95 trang 141 Sách bài tập Hình học lớp 12 Nâng cao.
    Trong không gian tọa độ Oxyz cho sáu điểm
    A(2; 0; 0); A’(6; 0; 0); B (0; 3; 0); B’(0; 4; 0); C(0; 0; 3); C’(0; 0; 4).
    a) Viết phương trình mp(ABC) và mp(A’B’C’). Tính cosin của góc giữa 2 mặt phẳng đó.
    b) Viết phương trình giao tuyến \(\Delta \) của hai mặt phẳng mp(ABC) và mp (A’B’C’). Tính khoảng cách từ gốc O tới đường thẳng \(\Delta \).
    c) Gọi G là trọng tâm của tam giác ABC, H’ là trực tâm của tam giác A’B’C’. Chứng minh ba điểm O, G, H’ thẳng hàng. Xác định tọa độ H’.
    d) Gọi O’ là điểm đối xứng của O qua mặt phẳng (ABC). Điểm O’ có thuộc mp(A’B’C’) không?
    e) Viết phương trình mặt cầu (S) đi qua bốn điểm A, A’, B, C. Chứng minh rằng mặt cầu đó cũng đi qua B’ và C’.
    g) Viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) và song song với mặt phẳng tọa độ (Oxy).
    Giải
    a) Mặt phẳng \(\left( {ABC} \right)\) có phương trình theo đoạn chắn là \({x \over 2} + {y \over 3} + {z \over 3} = 1\) nên có phương trình tổng quát là:
    \(3x + {\rm{ }}2y{\rm{ }} + {\rm{ }}2z{\rm{ }} - {\rm{ }}6{\rm{ }} = {\rm{ }}0.\)
    Mặt phẳng này có vectơ pháp tuyến là \(\overrightarrow n = {\rm{ }}\left( {3{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ }}2} \right).\)
    Mặt phẳng \(\left( {A'B'C} \right)\) có phương trình theo đoạn chắn là \({x \over 6} + {y \over 4} + {z \over 4} = 1\) nên có phương trình tổng quát \(2x{\rm{ }} + {\rm{ }}3y{\rm{ }} + {\rm{ }}3z - 12{\rm{ }} = {\rm{ }}0.\)
    Mặt phẳng này có vectơ pháp tuyến là \(\overrightarrow {n'} = {\rm{ }}\left( {2{\rm{ }};{\rm{ }}3{\rm{ }};{\rm{ }}3} \right).\)
    Gọi \(\varphi \) là góc giữa hai mặt phẳng đó, ta có
    \(\cos \varphi = {{\left| {\overrightarrow n .\overrightarrow {n'} } \right|} \over {\left| {\overrightarrow n } \right|.\left| {\overrightarrow {n'} } \right|}} = {{\left| {6 + 6 + 6} \right|} \over {\sqrt {17} .\sqrt {22} }} = {{18} \over {\sqrt {374} }}.\)
    b) Gọi A là giao tuyến của \(\left( {ABC} \right)\) và \(\left( {A'B'C} \right).\) Điểm \(M\left( {x;{\rm{ }}y;{\rm{ }}z} \right) \in \Delta \) nên toạ độ của M là nghiệm của hệ :
    \(\left\{ \matrix{ 3x + {\rm{ }}2y{\rm{ }} + {\rm{ }}2z{\rm{ }} - {\rm{ }}6{\rm{ }} = {\rm{ }}0 \hfill \cr 2x + {\rm{ }}3y{\rm{ }} + {\rm{ }}3z{\rm{ }} - {\rm{ }}12{\rm{ }} = {\rm{ }}0. \hfill \cr} \right.\)
    Cho \(z = 0,\) ta tính được \(x = - {6 \over 5},y = {{24} \over 5}.\)
    Vậy điểm \(I\left( { - {6 \over 5};{{24} \over 5};0} \right)\) thuộc \(\Delta \) và vectơ chỉ phương của \(\Delta \) là
    \(\overrightarrow {{u_\Delta }} = {1 \over 5}\left[ {\overrightarrow n ,\overrightarrow {n'} } \right] = \left( {0; - 1;1} \right).\)
    Gọi d là khoảng cách từ O tới \(\Delta \), ta có : \(d = {{\left| {\left[ {\overrightarrow {OI} ,\overrightarrow {{u_\Delta }} } \right]} \right|} \over {\left| {\overrightarrow {{u_\Delta }} } \right|}}.\)
    Vì \(\overrightarrow {OI}\left( { - {6 \over 5};{{24} \over 5};0} \right)\), \(\left[ {\overrightarrow {OI} ,\overrightarrow {{u_\Delta }} } \right] = \left( {{{24} \over 5};{6 \over 5};{6 \over 5}} \right)\) nên \(d\left( {O;\Delta } \right) = {{\sqrt {{{\left( {{{24} \over 5}} \right)}^2} + {{\left( {{6 \over 5}} \right)}^2} + {{\left( {{6 \over 5}} \right)}^2}} } \over {\sqrt {{1^2} + {1^2}} }} = {{18} \over 5}.\)
    c) Gọi G là trọng tâm tam giác ABC, ta có \(G = \left( {{2 \over 3};1;1} \right).\) Vectơ pháp tuyến của mp\(\left( {A'B'C'} \right)\) là \(\overrightarrow {n'} {\rm{ }} = {\rm{ }}\left( {2{\rm{ }};{\rm{ }}3{\rm{ }};{\rm{ }}3} \right){\rm{ }} = {\rm{ }}3\overrightarrow {OG} .\) Vậy đường thẳng OG vuông góc với mp\(\left( {A'B'C'} \right)\).
    Mặt khác, tứ diện OA'B'C' vuông tại O nên trực tâm H' của tam giác A'B'C' là hình chiếu vuông góc của O trên mp\(\left( {A'B'C'} \right)\). Do đó, O, G, H' thẳng hàng.
    Để xác định toạ độ của H', ta giải hệ
    \(\left\{ \matrix{ x = 2t \hfill \cr y = 3t \hfill \cr z = 3t \hfill \cr 2x + 3y + 3z - 12 = 0 \hfill \cr} \right.\)
    \(\Rightarrow t = {6 \over {11}} \Rightarrow H' = \left( {{{12} \over {11}};{{18} \over {11}};{{18} \over {11}}} \right).\)
    d) Gọi H là hình chiếu vuông góc của O trên mp(ABC). Toạ độ của H thoả mãn hệ
    \(\left\{ \matrix{ x = 3t \hfill \cr y = 2t \hfill \cr z = 2t \hfill \cr 3x + 2y + 2z - 6 = 0 \hfill \cr} \right. \)
    \(\Rightarrow t = {6 \over {17}} \Rightarrow H = \left( {{{18} \over {17}};{{12} \over {17}};{{12} \over {17}}} \right).\)
    Gọi O' là điểm đối xứng của O qua mp(ABC). Vì H là trung điểm của OO' nên \(O'{\rm{ }} = \left( {{{36} \over {17}};{{24} \over {17}};{{24} \over {17}}} \right).\)
    Thay toạ độ của O' vào phương trình mp(A'B'C'), ta thấy không thoả mãn, vậy O' không thuộc mp(A'B'C').
    e) Giả sử (S) có phương trình \({x^2} + {y^2} + {\rm{ }}{z^2} + 2ax + {\rm{ }}2by + {\rm{ }}2cz + {\rm{ }}d{\rm{ }} = 0.\)
    Vì \(A,A',{\rm{ }}B,C \in \left( S \right)\) nên ta có hệ:
    \(\left\{ {\matrix{ \matrix{ 4{\rm{ }} + 4a + d{\rm{ }} = 0{\rm{ }} \hfill \cr 36{\rm{ }} + {\rm{ }}12a + {\rm{ }}d = {\rm{ }}0 \hfill \cr} \hfill \cr {9{\rm{ }} + 6b + d{\rm{ }} = 0} \hfill \cr {9{\rm{ }} + 6c + d = {\rm{ }}0} \hfill \cr } } \right. \Rightarrow \left\{ \matrix{ a = - 4 \hfill \cr b = c = - {7 \over 2} \hfill \cr d = 12. \hfill \cr} \right.\)
    Vậy (S) có phương trình : \({x^2} + {y^2} + {\rm{ }}{z^2} - 8x - 7y - 7z + {\rm{ }}12{\rm{ }} = 0.\)
    (S) có tâm \(K = \left( {4;{7 \over 2};{7 \over 2}} \right)\) và \(R = {{\sqrt {114} } \over 2}.\)
    Toạ độ B', C' cũng thoả mãn (S) nên mặt cầu (S) cũng đi qua B', C'.
    g) Gọi \(\left( \alpha \right)\) là mặt phẳng song song với (Oxy) có phương trình \(\;z + {\rm{ }}D{\rm{ }} = 0\;(D{\rm{ }} \ne 0).\) Khi đó \(\left( \alpha \right)\) tiếp xúc với (S) khi và chỉ khi \(d\left( {K,\left( \alpha \right)} \right) = R\)
    Vậy có hai mặt phẳng tiếp xúc mặt cầu (S) và song song với mp(Oxy) là:
    \(z - {7 \over 2} \pm {{\sqrt {114} } \over 2} = 0\) .