Sách bài tập Toán 9 - Phần Hình học - Chương III - Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Câu 28 trang 104 Sách Bài Tập (SBT) Toán 9 Tập 2.
    Các điểm \({A_1},{A_2},....,{A_{19}},{A_{20}}\) được sắp xếp theo thứ tự đó trên đường tròn (O) và chia đường tròn thành 20 cung bằng nhau. Chứng minh rằng dây \({A_1}{A_8}\) vuông góc với dây \({A_3}{A_{16}}\).
    Giải
    01.png
    Đường tròn (O) được chia thành 20 cung bằng nhau nên số đo mỗi cung bằng
    3600: 20 = 180.
    Gọi giao điểm của A1A8 và A3A16 là I.
    Ta có: sđ \(\overparen{{A_1}{A_3}}\) \( = {2.18^0} = {36^0}\)
    \(\overparen{{A_8}{A_16}}\) \( = {8.18^0} = {144^0}\)
    Ta có: \(\widehat {{A_1}I{A_3}} = {1 \over 2}\) sđ \(\overparen{{A_1}{A_3}}\) + sđ \(\overparen{{A_8}{A_16}}\) (góc có đỉnh ở trong đường tròn (O))
    \( \Rightarrow \) \(\widehat {{A_1}I{A_3}} = {{36^\circ + 144^\circ } \over 2} = 90^\circ \)
    \( \Rightarrow \) A1A8⊥ A3A16

    Câu 29 trang 105 Sách Bài Tập (SBT) Toán 9 Tập 2.
    Cho tam giác ABC vuông góc ở A. Đường tròn đường kính AB cắt BC ở D. Tiếp tuyến ở D cắt AC ở P. Chứng minh PD = PC.
    Giải
    02.png
    Trong đường tròn (O) ta có \(\widehat C\) là góc có đỉnh ở ngoài đường tròn.
    \(\widehat C = {1 \over 2}\) (sđ \(\overparen{AmB}\) - sđ \(\overparen{AD}\)) (tính chất góc có đỉnh ở ngoài đường tròn)
    mà sđ \(\overparen{AmB}\) = sđ \(\overparen{ADB}\) = 1800
    \(\widehat C = {1 \over 2}\) (sđ \(\overparen{ADB}\) - sđ \(\overparen{AD}\)) = \( {1 \over 2}\) (sđ \(\overparen{AD}\) + sđ \(\overparen{DB}\) - sđ \(\overparen{AD}\))= \( {1 \over 2}\) sđ \(\overparen{BD}\) (1)
    \(\widehat {CDP} = \widehat {BDx}\) (đối đỉnh) (2)
    \(\widehat {BDx} = {1 \over 2}\) sđ \(\overparen{BD}\) (góc giữa tia tiếp tuyến và dây cung) (3)
    Từ (1), (2) và (3) suy ra: \(\widehat C = \widehat {CDP} \Rightarrow \Delta PCD\) cân tại P. Vậy PD = PC

    Câu 30 trang 105 Sách Bài Tập (SBT) Toán 9 Tập 2.
    Hai dây cung AB và CD kéo dài cắt nhau tại điểm E ở ngoài đường tròn (O) (B nằm giữa A và E, C nằm giữa D và E). Cho biết \(\widehat {CDE}\) = 75 0, \(\widehat {CED} = {22^0}\), \(\widehat {AOD} = {144^0}\).
    Chứng minh \(\widehat {AOB} = \widehat {BAC}\).
    Giải
    03.png
    Trong đường tròn (O) ta có là góc có đỉnh ở ngoài đường tròn.
    \(\widehat E = {1 \over 2}\) (sđ \(\overparen{AD}\) - sđ \(\overparen{BC}\))
    sđ \(\overparen{AD}\) = \(\widehat {AOD} = 144^\circ \)
    \( \Rightarrow \) 22º = \({{144^\circ - sđ \overparen{BC}} \over 2}\)
    Þ sđ \(\overparen{BC}\)= 144º - 2. 22º = 100º
    \(\widehat {BAC} = {1 \over 2}\) sđ \(\overparen{BC}\)(tính chất nội tiếp)
    \( \Rightarrow \) \(\widehat {BAC} = {1 \over 2}.100^\circ = 50^\circ \)
    Trong ∆ABC ta có \(\widehat {CBE}\) là góc ngoài tại đỉnh B.
    \( \Rightarrow \) \(\widehat {CBE} = \widehat {BAC} + \widehat {ACB}\) (tính chất góc ngoài của tam giác)
    \( \Rightarrow \) \(\widehat {ACB} = \widehat {CBE} - \widehat {BAC} = 75^\circ - 50^\circ = 25^\circ \)
    \(\widehat {ACB} = {1 \over 2}\widehat {AOB}\) (hệ quả góc nội tiếp)
    \(\widehat {AOB} = 2.\widehat {ACB} = 50^\circ \)
    Vậy \(\widehat {AOB} = \widehat {BAC} = 50^\circ \)

    Câu 31 trang 105 Sách Bài Tập (SBT) Toán 9 Tập 2.
    A, B, C là ba điểm thuộc đường tròn (O) sao cho tiếp tuyến tại A cắt tia BC tại D.
    Tia phân giác của \(\widehat {BAC}\) cắt đường tròn ở M, tia phân giác của \(\widehat D\) cắt AM ở I. Chứng minh DI \( \bot AM\).
    Giải
    04.png
    \(\widehat {BAM} = \widehat {MAC}\) (vì AM là tia phân giác của \(\widehat {BAC}\))
    \( \Rightarrow \widehat {BM} =\) \(\overparen{CM}\) (1)
    Ta có: \(\widehat {DAM} = {1 \over 2}\) sđ \(\overparen{ACM}\) (góc giữa tia tiếp tuyến và dây cung)
    Hay \(\widehat {DAM} = {1 \over 2}\) (sđ \(\overparen{AC}\) + sđ \(\overparen{CM}\) ) (2)
    Gọi N là giao điểm của AM và BC.
    Ta có: \(\widehat {ANC}\) là góc có đỉnh ở trong đường tròn (O).
    \( \Rightarrow \) \(\widehat {ANC} = {1 \over 2}\) (sđ \(\overparen{AC}\) + sđ \(\overparen{BM}\) (3)
    Từ (1), (2) và (3) suy ra: \(\widehat {DAM} = \widehat {ANC}\) hay \(\widehat {DAN} = \widehat {AND}\)
    Suy ra: ∆DAN cân tại D có DI là tia phân giác nên suy ra DI là đường cao
    \( \Rightarrow \) DI ⊥ AN hay DI ⊥ AM

    Câu 32 trang 105 Sách Bài Tập (SBT) Toán 9 Tập 2.
    Trên đường tròn (O; R) vẽ ba dây liên tiếp bằng nhau AB, BC, CD, mỗi dây có độ dài nhỏ hơn R. Các đường thẳng AB và CD cắt nhau tại I, các tiếp tuyến của đường tròn tại B, D cắt nhau tại K.
    a) Chứng minh \(\widehat {BIC} = \widehat {BKD}\)
    b) Chứng minh BC là tia phân giác của \(\widehat {KBD}\).
    Giải
    05.png
    a) \(\overparen{AB}\) = \(\overparen{BC}\) = \(\overparen{CD}\) (gt) (1)
    Trong đường tròn (O) ta có \(\widehat {BKD}\) là góc có đỉnh ở ngoài đường tròn.
    \( \Rightarrow \widehat {BKD} = {1 \over 2}\) (sđ \(\overparen{BAD}\) - sđ \(\overparen{BCD}\))
    = \({1 \over 2}\) (sđ \(\overparen{AB}\) + sđ \(\overparen{AmB}\) - sđ \(\overparen{BC}\) - sđ \(\overparen{CD}\)) (2)
    Từ (1) và (2) \( \Rightarrow \widehat {BKD} = {1 \over 2}\) (sđ \(\overparen{AmB}\) - sđ \(\overparen{BC}\)) (3)
    Trong đường tròn (O) ta có \(\widehat {BIC}\) là góc có đỉnh ở ngoài đường tròn.
    \( \Rightarrow \widehat {BIC} = {1 \over 2}\) (sđ \(\overparen{AmB}\) - sđ \(\overparen{BC}\)) (4)
    Từ (3) và (4) suy ra: \(\widehat {BIC} = \widehat {BKD}\)
    b) \(\widehat {KBC} = {1 \over 2}\)sđ \(\overparen{BC}\) (tính chất giữa tia tiếp tuyến và dây cung) (5)
    \(\widehat {CBD} = {1 \over 2}\) sđ \(\overparen{CD}\) (tính chất góc nội tiếp) (6)
    Từ (1), (5) và (6) suy ra: \(\widehat {KBC} = \widehat {CBD}\). Vậy BC là tia phân giác của \(\widehat {KBD}\).