Tổng hợp bài tập trắc nghiệm bài tập chuyên đề Quy tắc tính đạo hàm

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Tính đạo hàm của hàm số \(y=\dfrac{\left(2-x^2\right)\left(3-x^3\right)}{\left(1-x\right)^2}\)
    • \(y'=\dfrac{-3x^5+5x^4+2x^3-6x^2-6x+12}{\left(1-x\right)^4}\)
    • \(y'=\dfrac{-3x^5+5x^4+2x^3-6x^2-6x+12}{\left(1-x\right)^3}\)
    • \(y'=\dfrac{-3x^5-5x^4+2x^3+6x^2-6x+12}{\left(1-x\right)^3}\)
    • \(y'=\dfrac{-3x^5+x^4+2x^3-3x^2-6x+12}{\left(1-x\right)^3}\)
    Hướng dẫn giải:

    \(y=\dfrac{\left(2-x^2\right)\left(3-x^3\right)}{\left(1-x\right)^2}=\dfrac{x^5-2x^3-3x^2+6}{\left(1-x\right)^2}=\dfrac{u}{v}\) với \(u=x^5-2x^3-3x^2+6,v=\left(1-x\right)^2\). Ta có \(y'=\dfrac{u'v-uv'}{v^2}\).
    \(u'=5x^4-6x^2-6x,v'=-2\left(1-x\right)\) ; \(v^2=\left(1-x\right)^4\)
    \(u'v-uv'=\left(5x^4-6x^2-6x\right)\left(1-x\right)^2+2\left(x^5-2x^3-3x^2+6\right)\left(1-x\right)=\left(1-x\right)\left[\left(5x^4-6x^2-6x\right)\left(1-x\right)+2\left(x^5-2x^3-3x^2+6\right)\right]\)
    \(=\left(1-x\right)\left(-3x^5+5x^4+2x^3-6x^2-6x+12\right)\) . Do đó \(y'=\dfrac{-3x^5+5x^4+2x^3-6x^2-6x+12}{\left(1-x\right)^3}\)
     
  2. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Tính đạo hàm của hàm số \(y=\sqrt[m+n]{\left(1-x\right)^m\left(1+x\right)^n}\) .
    • \(\dfrac{\left(m+n\right)+\left(m+n\right)x}{\left(m+n\right)\sqrt[m+n]{\left(1-x\right)^n\left(1+x\right)^m}}\)
    • \(\dfrac{\left(m+n\right)-\left(m-n\right)x}{\left(m+n\right)\sqrt[m+n]{\left(1-x\right)^n\left(1+x\right)^m}}\)
    • \(\dfrac{\left(m-n\right)-\left(m+n\right)x}{\left(m+n\right)\sqrt[m+n]{\left(1-x\right)^n\left(1+x\right)^m}}\)
    • \(\dfrac{\left(m+n\right)+\left(m-n\right)x}{\sqrt[m+n]{\left(1-x\right)^n\left(1+x\right)^m}}\)
    Hướng dẫn giải:

    Ta có
    \(y=\left(1-x\right)^{\dfrac{m}{m+n}}\left(1+x\right)^{\dfrac{n}{m+n}}\Rightarrow y'=\dfrac{-m}{m+n}\left(1-x\right)^{\dfrac{m}{m+n}-1}\left(1+x\right)^{\dfrac{n}{m+n}}+\left(1-x\right)^{\dfrac{m}{m+n}}.\dfrac{n}{m+n}\left(1+x\right)^{\dfrac{n}{m+n}-1}\)
    \(y'=-\dfrac{m}{m+n}\left(1-x\right)^{-\dfrac{n}{m+n}}\left(1+x\right)^{\dfrac{n}{m+n}}+\dfrac{n}{m+n}\left(1-x\right)^{\dfrac{m}{m+n}}\left(1+x\right)^{-\dfrac{m}{m+n}}\)
    \(=-\dfrac{m}{m+n}\left(\dfrac{1+x}{1-x}\right)^{\dfrac{n}{m+n}}+\dfrac{n}{m+n}\left(\dfrac{1-x}{1+x}\right)^{\dfrac{m}{m+n}}\)\(=-\dfrac{m\sqrt[m+n]{\left(1+x\right)^n}}{\left(m+n\right)\sqrt[m+n]{\left(1-x\right)^n}}+\dfrac{n\sqrt[m+n]{\left(1-x\right)^m}}{\left(m+n\right)\sqrt[m+n]{\left(1+x\right)^m}}\)
    \(=\dfrac{-m\left(1+x\right)+n\left(1-x\right)}{\left(m+n\right)\sqrt[m+n]{\left(1-x\right)^n\left(1+x\right)^m}}=\dfrac{\left(n-m\right)-\left(m+n\right)x}{\left(m+n\right)\sqrt[m+n]{\left(1-x\right)^n\left(1+x\right)^m}}\)
     
  3. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Cho hàm số \(y=f\left(x\right)=\frac{1}{2}ln\left(1+x\right)-\frac{1}{4}ln\left(1+x^2\right)-\frac{1}{2\left(1+x\right)}\)
    Tính \(f'\left(1\right)\).
    • \(\frac{1}{2}\)
    • \(\frac{1}{4}\)
    • \(\frac{1}{8}\)
    • \(\frac{1}{12}\)
    Hướng dẫn giải:

    \(f\left(x\right)=\dfrac{1}{2}\ln\left(1+x\right)-\dfrac{1}{4}\ln\left(1+x^2\right)-\dfrac{1}{2\left(x+1\right)}\),
    \(f'\left(x\right)=\dfrac{1}{2}.\dfrac{1}{1+x}-\dfrac{1}{4}.\dfrac{2x}{1+x^2}+\dfrac{1}{2\left(1+x\right)^2}=\dfrac{1}{2}\left(\dfrac{1}{1+x}-\dfrac{1}{1+x^2}+\dfrac{1}{\left(1+x\right)^2}\right)\)
    \(\Rightarrow\) \(f'\left(1\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}\right)=\dfrac{1}{8}\)
     
  4. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Tìm đạo hàm của hàm số \(y=\frac{1}{4\left(1+x^4\right)}+\frac{1}{4}ln\left(\frac{x^4}{1+x^4}\right)\) .
    • \(\dfrac{1}{x\left(1+x^4\right)^2}\)
    • \(\dfrac{1}{x^2\left(1+x^4\right)^2}\)
    • \(\dfrac{1}{x^3\left(1+x^4\right)^2}\)
    • \(\dfrac{1}{x^4\left(1+x^4\right)}\)
    Hướng dẫn giải:

    Ta có \(\left(\dfrac{1}{\left(1+x^4\right)}\right)'=\dfrac{-4x^3}{\left(1+x^4\right)^2}=-\dfrac{4x^3}{\left(1+x^4\right)^2}\Rightarrow\left(\dfrac{1}{4\left(1+x^4\right)}\right)'=-\dfrac{x^3}{\left(1+x^4\right)^2}\)
    và \(\dfrac{x^4}{1+x^4}=1-\dfrac{1}{1+x^4}\Rightarrow\left(\dfrac{x^4}{1+x^4}\right)'=\left(-\dfrac{1}{1+x^4}\right)'=\dfrac{4x^3}{\left(1+x^4\right)^2}\) suy ra
    \(\left(\ln\left(\dfrac{x^4}{1+x^4}\right)\right)'=\left(\dfrac{x^4}{1+x^4}\right)':\left(\dfrac{x^4}{1+x^4}\right)=\dfrac{4x^3}{\left(1+x^4\right)^2}.\dfrac{1+x^4}{x^4}=\dfrac{4}{\left(1+x^4\right)x}\)\(\Rightarrow\left(\dfrac{1}{4}\ln\left(\dfrac{x^4}{1+x^4}\right)\right)'=\dfrac{1}{x\left(1+x^4\right)}\)
    Do đó \(y'=-\dfrac{x^3}{\left(1+x^4\right)^2}+\dfrac{1}{x\left(1+x^4\right)}=\dfrac{-x^4+\left(1+x^4\right)}{x\left(1+x^4\right)^2}=\dfrac{1}{x\left(1+x^4\right)^2}\)
     
  5. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Tính đạo hàm của hàm số \(y=ln\left(\sqrt{1+e^x}-1\right)-ln\left(\sqrt{1+e^x}+1\right)\) .
    • \(\sqrt{1+e^x}\)
    • \(\frac{1}{\sqrt{1+e^x}}\)
    • \(\frac{e^x}{\sqrt{1+e^x}}\)
    • \(\frac{\sqrt{1+e^x}}{e^x}\)
    Hướng dẫn giải:

    Áp dụng công thức \(\left(\ln u\right)=\dfrac{u'}{u}\), ta suy ra
    \(\left(\ln\left(\sqrt{1+e^x}-1\right)\right)'=\dfrac{\dfrac{e^x}{2\sqrt{1+e^x}}}{\sqrt{1+e^x}-1}=\dfrac{e^x}{2\sqrt{1+e^x}.\left(\sqrt{1+e^x}-1\right)}\)
    \(\left(\ln\left(\sqrt{1+e^x}+1\right)\right)'=\dfrac{\dfrac{e^x}{2\sqrt{1+e^x}}}{\sqrt{1+e^x}+1}=\dfrac{e^x}{2\sqrt{1+e^x}.\left(\sqrt{1+e^x}+1\right)}\)
    \(y'=\dfrac{e^x}{2\sqrt{1+e^x}\left(\sqrt{1+e^x}-1\right)}-\dfrac{e^x}{2\sqrt{1+e^x}\left(\sqrt{1+e^x}+1\right)}=\dfrac{2e^x}{2\sqrt{1+e^x}.e^x}=\dfrac{1}{\sqrt{1+e^x}}\)
     
  6. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Cho hàm số \(y=f\left(x\right)=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}ln\left(x+\sqrt{x^2-a^2}\right)\). Tính \(f'\left(2a\right)\).
    • \(a\sqrt{2}\)
    • \(a\)
    • \(a\sqrt{3}\)
    • \(2a\)
    Hướng dẫn giải:

    Ta có \(\left(\sqrt{x^2-a^2}\right)'=\dfrac{x}{\sqrt{x^2-a^2}}\), \(\left(x+\sqrt{x^2-a^2}\right)'=1+\dfrac{x}{\sqrt{x^2-a^2}}=\dfrac{x+\sqrt{x^2-a^2}}{\sqrt{x^2-a^2}}\).
    Do đó \(\left(\dfrac{x}{2}\sqrt{x^2-a^2}\right)'=\dfrac{1}{2}\sqrt{x^2-a^2}+\dfrac{x}{2}.\dfrac{x}{\sqrt{x^2-a^2}}=\dfrac{2x^2-a^2}{2\sqrt{x^2-a^2}}\) và \(\left(\ln\left(x+\sqrt{x^2-a^2}\right)\right)'=\dfrac{x+\sqrt{x^2-a^2}}{\sqrt{x^2-a^2}}:\left(x+\sqrt{x^2-a^2}\right)=\dfrac{1}{\sqrt{x^2-a^2}}\)
    \(y'=\dfrac{2x^2-a^2}{2\sqrt{x^2-a^2}}-\dfrac{a^2}{2\sqrt{x^2-a^2}}=\sqrt{x^2-a^2}\). Vì vậy \(f'\left(2a\right)=\sqrt{4a^2-a^2}=a\sqrt{3}\)
     
  7. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Cho hàm số \(y=\varphi\left(x\right)=\sqrt{x^2+1}-ln\left(\frac{1+\sqrt{x^2+1}}{x}\right)\). Tính \(\varphi'\left(2\right)\) .
    • \(\frac{\sqrt{3}}{2}\)
    • 1
    • \(\frac{\sqrt{5}}{2}\)
    • \(\frac{\sqrt{6}}{2}\)
    Hướng dẫn giải:

    Ta có \(\left(1+\sqrt{x^2+1}\right)'=\left(\sqrt{x^2+1}\right)'=\dfrac{x}{\sqrt{x^2+1}},\)
    Vì \(\varphi\left(x\right)=\sqrt{x^2+1}-\ln\left(1+\sqrt{x^2+1}\right)+\ln x\Rightarrow\varphi'\left(x\right)=\dfrac{x}{\sqrt{x^2+1}}-\dfrac{x}{\sqrt{x^2+1}}:\left(1+\sqrt{x^2+1}\right)+\dfrac{1}{x}\)
    Do đó \(\varphi'\left(2\right)=\dfrac{2}{\sqrt{5}}-\dfrac{2}{\sqrt{5}\left(1+\sqrt{5}\right)}+\dfrac{1}{2}=\dfrac{2}{\sqrt{5}}\left(1-\dfrac{1}{1+\sqrt{5}}\right)+\dfrac{1}{2}=\dfrac{2}{1+\sqrt{5}}+\dfrac{1}{2}=\dfrac{5+\sqrt{5}}{2\left(1+\sqrt{5}\right)}=\dfrac{\sqrt{5}}{2}\)
     
  8. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Cho hàm số \(y=x.e^{-\frac{x^2}{2}}\).
    Hệ thức nào trong các hệ thức sau là đúng?
    • \(x.y=\left(1+x^2\right).y'\)
    • \(x.y'=\left(1+x^2\right).y\)
    • \(x.y=\left(1-x^2\right).y'\)
    • \(x.y'=\left(1-x^2\right).y\)
    Hướng dẫn giải:

    Ta có \(\left(e^{-\dfrac{x^2}{2}}\right)'=-x.e^{-\dfrac{x^2}{2}}\) nên \(y'=1.e^{-\dfrac{x^2}{2}}+x.\left(-xe^{-\dfrac{x^2}{2}}\right)=\left(1-x^2\right)e^{-\dfrac{x^2}{2}}\) suy ra
    \(xy'=\left(1-x^2\right)xe^{-\dfrac{x^2}{2}}\)

    hay \(xy'=\left(1-x^2\right)y\) .
    Đáp số: \(xy'=\left(1-x^2\right)y\)
     
  9. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Cho hàm số \(y=\frac{1}{1+x+\ln x}\). Khẳng định nào trong các khẳng định sau đây đúng?
    • \(xy=y'\left(y\ln x+1\right)\)
    • \(xy'=y\left(y\ln x-1\right)\)
    • \(xy=y\left(y'\ln x-1\right)\)
    • \(xy'=y\left(y\ln x+1\right)\)
    Hướng dẫn giải:

    - Ta có \(\left(1+x+\ln x\right)'=1+\dfrac{1}{x}=\dfrac{x+1}{x}\) nên \(y'=\dfrac{-\left(x+1\right)}{x\left(1+x+\ln x\right)^2}\)
    \(\Rightarrow xy'=\dfrac{-\left(x+1\right)}{\left(1+x+\ln x\right)^2}=\dfrac{1}{1+x+\ln x}.\dfrac{-\left(1+x\right)}{1+x+\ln x}=y.\dfrac{\ln x-\left(1+x+\ln x\right)}{1+x+\ln x}\)
    \(=\dfrac{1}{1+x+\ln x}\left(\dfrac{1}{1+x+\ln x}.\ln x-1\right)=y\left(y\ln x-1\right)\).
    Đáp số: \(xy'=y\left(y\ln x-1\right)\)
     
  10. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪