Tóm tắt lý thuyết 1. Khái niệm về phương trình bậc nhất hai ẩn Phương trình bậc nhất hai ẩn x và y là hệ thức có dạng \(ax+by=c\), trong đó a,b,c là các số đã biết (\(a \neq 0\) hoặc \(b \neq 0\)) Chú ý: Trong mặt phẳng tọa độ Oxy, mỗi nghiệm của phương trình \(ax+by=c\) được biểu diễn bởi một điểm. Nghiệm \((x_o;y_o)\) được biểu diễn bởi điểm có tọa độ \((x_o;y_o)\) 1. Tập nghiệm của phương trình bậc nhất hai ẩn Phương trình bậc nhất hai ẩn \(ax+by=c\) luôn luôn có vô số nghiệm. Tập nghiệm của nó được biểu diễn bởi đường thẳng \(ax+by=c\), kí hiệu là \((d)\) Nếu \(a \neq 0\) và \(b \neq 0\) thì \((d)\) là đồ thị của hàm số bậc nhất \(y=\frac{-a}{b}x+\frac{c}{b}\) Bài tập minh họa 1. Bài tập cơ bản Bài 1: Tìm hai nghiệm của của phương trình \(x+2y=1\). Hướng dẫn: Lần lượt cho \(y=0\) và \(y=1\) ta được \(x=1\) và \(x=-1\) nên \((1;0)\) và \((-1;1)\) là hai nghiệm của phương trình \(x+2y=1\). Bài 2: Cặp số \((1;1)\) có phải là nghiệm của phương trình \(x+y=1\) không? Hướng dẫn: Ta có \(1+1=2 \neq 1\) nên \((1;1)\) không là nghiệm của phương trình \(x+y=1\). Bài 3: Cho hai cặp số \((1;2)\) và \((0;1)\). Hỏi cặp số nào là nghiệm của phương trình \(2x+3y=8\) ? Hướng dẫn: Ta có: \(2.1+3.2=8\) và \(2.0+3.1=3 \neq 8\) nên \((1;2)\) là nghiệm của phương trình \(2x+3y=8\) 2 .Bài tập nâng cao Bài 1: Cho phương trình \((m-2)x+(m-1)y=1\) (m là tham số). Chứng minh rằng đường thẳng biểu diễn tập nghiệm của phương trình này luôn đi qua một điểm cố định với mọi giá trị của m. Hướng dẫn: Gọi (d) làđường thẳng biểu diễn tập nghiệm của phương trình \((m-2)x+(m-1)y=1\) thì (d): \((m-2)x+(m-1)y=1\). Giả sử (d) luôn đi qua \(M(x_o;y_o)\) với mọi m Khi đó \((m-2)x_o+(m-1)y_o=1\) với mọi m Suy ra \((x_o+y_o)m-(2x_o+y_o+1)=0\) với mọi m \(<=>\left\{\begin{matrix} x_o+y_o=0\\ 2x_o+y_o+1=0 \end{matrix}\right.<=>\left\{\begin{matrix} x_o=-1\\ y_o=1 \end{matrix}\right.\). Vậy (d) luôn đi qua điểm cố định \(M(-1;1)\). Bài 2: Tìm các điểm nằm trên đường thẳng \(8x+9y=-79\), có hoành độ và tung độ là các số nguyên và nằm bên trong các vuông phần tư III. Hướng dẫn: Ta cần tìm nghiệm nguyên âm của phương trình 8x+9y=-79. Rút x từ phương trình ta được: \(x=\frac{-9y-79}{8}=-y-10+\frac{1-y}{8}\) Đặt \(\frac{1-y}{8}=k (k \in \mathbb{Z})\) thì \(y=1-8k\). Từ đó tính được \(x=9k-11\) Giải điều kiện \(\left\{\begin{matrix} 9k-11<0\\ 1-8k<0 \end{matrix}\right.<=>\frac{1}{8}k=1\) (Do \(k \in \mathbb{Z}\)). Vậy có một điểm duy nhất phải tìm là \((-2;-7)\).