Tóm tắt lý thuyết 1. Khái niệm về hệ hai phương trình bậc nhất hai ẩn Cho hai phương trình bậc nhất hai ẩn \(ax+by=c\) và \(a'x+b'y=c'\). Khi đó ta có hệ phương trình trình bậc nhất hai ẩn \(\left\{\begin{matrix} ax+by=c\\ a'x+b'y=c' \end{matrix}\right. (I)\). Nếu hai phương trình đã cho có nghiệm chung \((x_o;y_o)\) thì ta nói hệ \((I)\) có nghiệm \((x_o;y_o)\). Nếu hai phương trình đã cho không có nghiệm chung thì ta nói hệ \((I)\) vô nghiệm. Giải hệ phương trình là tìm tất cả các nghiệm của nó. 2. Minh họa hình học tập nghiệm của hệ phương trình trình bậc nhất hai ẩn Cho \((d):ax+by=c\) và \((d'):a'x+b'y=c'\). Khi đó tập nghiệm của hệ \((I)\) được biểu diễn bởi tập hợp các điểm chung của \((d)\) và \((d')\). Nếu \((d)\) cắt \((d')\) thì hệ \((I)\) có một nghiệm duy nhất Nếu \((d)\) song song với \((d')\) thì hệ \((I)\) vô nghiệm Nếu \((d)\) trùng với \((d')\) thì hệ \((I)\) có vô số nghiệm 3. Hệ phương trình tương đương Hai hệ phương trình tương đương nhau nếu chúng có cùng tập nghiệm. Bài tập minh họa 1. Bài tập cơ bản Bài 1: Cho hệ phương trình \(\left\{\begin{matrix} y=2x+1\\ y=x+2 \end{matrix}\right.\). Tìm số nghiệm của hệ đã cho. Hướng dẫn: Vì hai đường thẳng \(y=2x+1\) và \(y=x+2\) cắt nhau (\(2 \neq 1\)) nên hệ đã cho có nghiệm duy nhất hay số nghiệm của hệ là 1. Bài 2: Hỏi hệ phương trình \(\left\{\begin{matrix} x-2y=1\\ 2x-4y=2 \end{matrix}\right.\) có mấy nghiệm? Hướng dẫn: Vì hai đường thẳng \(x-2y=1\) và \(2x-4y=2\) trùng nhau nên hệ đã cho có vô số nghiệm. Bài 3: Cho hệ phương trình \(\left\{\begin{matrix} x+y=1\\ x-y=0 \end{matrix}\right.\). Hỏi cặp số \((1;0)\) có phải nghiệm của hệ không? Hướng dẫn: Do \((1;0)\) là nghiệm của cả hai phương trình của hệ nên cũng là nghiệm của hệ 2. Bài tập nâng cao Bài 1: Cho hai hệ phương trình \(\left\{\begin{matrix} x-y=1\\ -2x+2y=2 \end{matrix}\right.(I)\) và \(\left\{\begin{matrix} x+y=2\\ 2x+2y=4 \end{matrix}\right.(II)\). Hỏi hai hệ này có tương đương nhau không? Hướng dẫn: Ta có \((1;0)\) là nghiệm của hệ \((I)\) nhưng không là nghiệm của \((II)\) nên hai hệ này không tương đương nhau (dù cả hai hệ đều có vô số nghiệm) Bài 2: Tìm giá trị a để hai hệ phương trình sau tương đương \(\left\{\begin{matrix} x-2y=0\\ x+y=3 \end{matrix}\right.(I)\) và \(\left\{\begin{matrix} ax-y=1\\ 2x+y=5 \end{matrix}\right.(II)\), biết hệ \((I)\) có nghiệm là \((2;1)\) Hướng dẫn: hệ \((I)\) và \((II)\) tương đương nhau nên nghiệm của hệ \((I)\) cũng là nghiệm của hệ \((II)\), khi đó \(\left\{\begin{matrix} a.2-1=1\\ 2.2+1=5 \end{matrix}\right. <=>a=1\)