Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (Vòng 1)

    Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (Vòng 1) gồm 4 bài toán tự luận, có lời giải chi tiết.

    Trích một số bài toán trong đề:
    + Cho hình thoi ABCD có góc BAD < 90 độ. Đường tròn tâm I nội tiếp tam giác ABD tiếp xúc với BD, BA lần lượt tại J, L. Trên đường thẳng LJ lấy điểm K sao cho BK song song ID
    a) Chứng minh rằng góc CBK = góc ABI
    b) Chứng minh rằng KC vuông góc với KB
    c) Chứng minh rằng bốn điểm C, K, I, L cùng nằm trên một đường tròn

    + Tìm tập hợp số nguyên dương n sao cho tồn tại một cách sắp xếp các số 1, 2, 3 … n thành a1, a2, a3 … an mà khi chia các số a1, a1a2, a1a2a3 … a1a2…an cho n ta được các số dư đôi một khác nhau.


    [​IMG]

    ✪ ✪ ✪ ✪ ✪



    Link tải tài liệu:

    LINK TẢI TÀI LIỆU


     
  2. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (vòng 2)

    Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (vòng 2) gồm 4 bài toán tự luận.

    Trích một số bài toán trong đề:
    + Cho n là số nguyên dương, n>5. Xét một đa giác lồi n cạnh. Người ta muốn kẻ số đường chéo của đa giác mà các đường chéo này chia đa giác đã cho thành đúng k miền, mỗi miền là một ngũ giác lồi (hai miền bất kỳ không có điểm trong chung)
    a. Chứng minh rằng ta có thể thực hiện được với n=2018, k=672
    b. Với n=2017, k=672 ta có thể thực hiện được không? Hãy giải thích

    + Giả sử p, q là hai số nguyên tố thỏa mãn đẳng thức: p(p – 1) = q(q^2 – 1) (*)
    a) Chứng minh rằng tồn tại số nguyên dương K sao cho: p – 1 = kq; q^2 – 1= kp
    b) Tìm tất cả các số nguyên tố p; q thỏa mãn đẳng thức (*)


    [​IMG]

    ✪ ✪ ✪ ✪ ✪



    Link tải tài liệu:

    LINK TẢI TÀI LIỆU