Giải tích 12 Chương 2 Bài 6 Bất phương trình mũ và bất phương trình lôgarit

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Tóm tắt lý thuyết

    1. Bất phương trình mũ
    a) Phương pháp đưa về cùng cơ số
    • Nếu \(a>1\):
      • \(a^x>a^y\Leftrightarrow x>y\)
      • \(a^{f(x)}>a^{g(x)}\Leftrightarrow f(x)>g(x)\)
    • Nếu \(0 < a <1 \)
    • \(a^x>a^y \Leftrightarrow x < y \)
    • \(a^{f(x)}>a^{g(x)}\Leftrightarrow f(x)>g(x)\)
    b) Phương pháp lôgarit hóa
    • Nếu \(a^{f(x)}>b \)
    • \(b\leqslant 0\), tập nghiệm bất phương trình là tập xác định của f(x)
    • \( \left\{\begin{matrix} 0 <a <1\\ b> 0 \end{matrix}\right. BPT \Leftrightarrow f(x)<\log_a b\)
    • \( \left\{\begin{matrix} a >1 \\ b>0 \end{matrix}\right. BPT \Leftrightarrow f(x)>\log_a b \)
    • Nếu \(a^{f(x)} < b \)
    • \( \left\{\begin{matrix} b>0\\ a>1 \end{matrix}\right. \ BPT\Leftrightarrow f(x)<\log_ab\)
    • \( \left\{\begin{matrix} b>0\\ 0 < a < 1 \end{matrix}\right. \ BPT\Leftrightarrow f(x)<\log_ab \)
    c) Phương pháp đặt ẩn phụ
    • Kiểu 1: Đặt 1 ẩn đưa về phương trình theo 1 ẩn mới
      • \(a.m^{2f(x)}+b.m^{f(x)}+c>0\): Đặt \(t=m^{f(x)}\), ta có \(at^2+bt+c>0\)
      • \(a.m^{f(x)}+b.n^{f(x)}+c>0\) trong đó \(m.n=1\): Đặt \(t=m^{f(x)}\), ta có \(a.t+b.\frac{1}{t}+c>0\)\(\Leftrightarrow at^2+ct+b>0\)
      • \(a.m^{2f(x)}+b.m^{f(x)}.n^{g(x)}+c.n^{g(x)}>0\)
    Chia cả 2 vế cho \(n^{2g(x)}\), ta có:
    \(a.\left [ \frac{m^{f(x)}}{n^{g(x)}} \right ]^2+b.\frac{m^{f(x)}}{n^{g(x)}} +c>0\)
    Đặt \(t=\frac{m^{f(x)}}{n^{g(x)}}\), ta có \(at^2+bt+c>0\)
    • Kiểu 2: Đặt 1 ẩn nhưng không làm mất ẩn ban đầu. Khi đó, xử lý phương trình theo các cách sau:
      • Đưa về bất phương trình tích.
      • Xem ẩn ban đầu như là tham số.
    • Kiểu 3: Đặt nhiều ẩn. Khi đó xử lý phương trình theo các cách sau:
      • Đưa về bất phương trình tích.
      • Xem 1 ẩn là tham số.
    d) Phương pháp hàm số
    • Xét hàm số \(y=a^x\):
      • Nếu \(a>1\): \(y=a^x\) đồng biến trên \(\mathbb{R}.\)
      • Nếu \(0
    • Tổng của hai hàm số đồng biến (NB) trên D là hàm số đồng biến (NB) trên D.
    • Tích của hai hàm số đồng biến và nhận giá trị dương trên D là hàm số đồng biến trên D.
    • Cho hàm số \(f(x)\) và \(g(x)\), nếu:
      • \(f(x)\)đồng biến trên D.
      • \(g(x)\) nghịch biến trên D.
    ⇒ \(f(x)-g(x)\) đồng biến trên D.

    2. Bất phương trình lôgarit
    a) Phương pháp đưa về cùng cơ số
    Với \(a>1:\) \(\log_a \ f(x) >\log_a \ g(x)\)\(\Leftrightarrow \left\{\begin{matrix} f(x)>g(x)\\ g(x)>0 \end{matrix}\right.\)
    Với \(0\log_a \ g(x)\)\(\Leftrightarrow \left\{\begin{matrix} f(x)0 \end{matrix}\right.\)

    b) Phương pháp mũ hóa
    Xét bất phương trình: \(\log_a \ f(x)> b \ \ (1)\) với \(0
    • \(a>1 \ \ (1)\Leftrightarrow f(x)>a^b\)
    • \(0 < a < 1 \ \ (1)\Leftrightarrow f(x)<a^b\)
    c) Phương pháp đặt ẩn phụ
    Các kiểu đặt ẩn phụ:
    • Kiểu 1: Đặt 1 ẩn và đưa về phương trình theo một ẩn mới.
    • Kiểu 2: Đặt 1 ẩn và không làm mất ẩn ban đầu.
      • Xem ẩn ban đầu là tham số
      • Bất phương trình tích
    • Kiểu 3: Đặt nhiều ẩn
    d) Phương pháp hàm số
    Các nội dung cần nhớ:
    • Xét hàm số \(y = {\log _a}x\,(0 < a \ne 1):\)
      • \(a>1, y =\log_a x\) đồng biến trên \((0;+\infty )\).
      • \(0
    • Xét hai hàm số \(f(x)\) và \(g(x):\)
      • Nếu \(f(x)\) và \(g(x)\) là hai hàm số đồng biến (nghịch biến) trên tập D thì \(f(x)+g(x)\) là hàm số đồng biến (nghịch biến) trên tập D.
      • Nếu \(f(x)\) và \(g(x)\) là hai hàm số đồng biến trên tập D và \(f(x).g(x)>0\) thì \(f(x).g(x)\) là hàm số đồng biến trên tập D.
      • Nếu \(f(x)\) đồng biến trên D, \(g(x)\) nghịch biến trên D:
        • \(f(x)-g(x)\) đồng biến trên D.
        • \(f(x)-g(x)\) nghịch biến trên D.
    Bài tập minh họa
    1. Bất phương trình mũ
    Ví dụ 1:
    Giải bất phương trình \({\left( {\sqrt 5 + 2} \right)^{x - 1}} \ge {\left( {\sqrt 5 - 2} \right)^{ - {x^2} + 3}}.\)

    Lời giải:
    Ta có: \(\left( {\sqrt 5 + 2} \right)\left( {\sqrt 5 - 2} \right) = 1 \Leftrightarrow \sqrt 5 - 2 = \frac{1}{{\sqrt 5 + 2}} = {\left( {\sqrt 5 + 2} \right)^{ - 1}}\)
    Vậy: \({\left( {\sqrt 5 + 2} \right)^{x - 1}} \ge {\left( {\sqrt 5 - 2} \right)^{ - {x^2} + 3}}\) \(\Leftrightarrow {\left( {\sqrt 5 + 2} \right)^{x - 1}} \ge {\left( {\sqrt 5 + 2} \right)^{{x^2} - 3}} \Leftrightarrow x - 1 \ge {x^2} - 3\)
    \(\Leftrightarrow {x^2} - x - 2 \le 0 \Leftrightarrow - 1 \le x \le 2\)
    Vậy BPT có tập nghiệm \(S = \left[ { - 1;2} \right]\)

    Ví dụ 2:
    Giải bất phương trình \({2^{{x^2} - 4}} \ge {5^{x - 2}}.\)

    Lời giải:
    Lấy logarit cơ số 2 hai vế của bất phương trình đã cho ta có:
    \({\log _2}\left( {{2^{{x^2} - 4}}} \right) \ge {\log _2}\left( {{5^{x - 2}}} \right) \Leftrightarrow {x^2} - 4 \ge \left( {x - 2} \right){\log _2}5\)
    \(\Leftrightarrow \left( {x - 2} \right)\left( {x + 2 - {{\log }_2}5} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l} x \ge 2\\ x \le {\log _2}5 - 2 \end{array} \right.\)
    Vậy BPT có tập nghiệm \(S = \left( { - \infty ;{{\log }_2}5 - 2} \right] \cup \left[ {2; + \infty } \right).\)

    Ví dụ 3:
    Giải bất phương trình\({{\rm{3}}^{{\rm{2x + 1}}}} - {10.3^x} + 3 \le 0\).

    Lời giải:
    \({{\rm{3}}^{{\rm{2x + 1}}}} - {10.3^x} + 3 \le 0{\rm{ }}\) \(\Leftrightarrow 3.{\left( {{3^x}} \right)^2} - {10.3^x} + 3 \le 0\)(1)
    Đặt \(t = {3^x} > 0\).
    Ta có: (1) \(\Leftrightarrow 3{t^2} - 10t + 3 \le 0 \Leftrightarrow \frac{1}{3} \le t \le 3\)\(\Leftrightarrow \frac{1}{3} \le {3^x} \le 3 \Leftrightarrow {3^{ - 1}} \le {3^x} \le {3^1} \Leftrightarrow - 1 \le x \le 1\)
    Vậy bất phương trình có nghiệm: \(S = \left[ { - 1;1} \right].\)

    Ví dụ 4:
    Giải bất phương trình \({3^x} + {4^x} > {5^x}.\)

    Lời giải:
    Chia 2 vế của phương trình cho ta được:
    \({3^x} + {4^x} > {5^x} \Leftrightarrow {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} > 1.\)
    Xét hàm số: \(f(x) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x},\) TXĐ: \(D=\mathbb{R}\)
    \(f'(x) = {\left( {\frac{3}{5}} \right)^x}.\ln \left( {\frac{3}{5}} \right) + {\left( {\frac{4}{5}} \right)^x}.\ln \left( {\frac{4}{5}} \right) < 0,\forall x \in\mathbb{R}\)
    Suy ra hàm số f(x) nghịch biến trên R.
    Mặt khác: \(f(2) = 1 \Rightarrow f(x) > 1 \Leftrightarrow x < 2\)
    Vậy BPT có tập nghiệm là \(S = \left( { - \infty ;2} \right).\)

    2. Bất phương trình lôgarit
    Ví dụ 5:
    Giải bất phương trình \({\log _{\frac{1}{2}}}\left( {{x^2} - x - \frac{3}{4}} \right) \le 2 - {\log _2}5.\)

    Lời giải:
    \({\log _{\frac{1}{2}}}\left( {{x^2} - x - \frac{3}{4}} \right) \le 2 - {\log _2}5 \Leftrightarrow {\log _{\frac{1}{2}}}\left( {{x^2} - x - \frac{3}{4}} \right) \le {\log _{\frac{1}{2}}}\frac{1}{4} + {\log _{\frac{1}{2}}}5\)
    \(\Leftrightarrow {\log _{\frac{1}{2}}}\left( {{x^2} - x - \frac{3}{4}} \right) \le {\log _{\frac{1}{2}}}\frac{5}{4}\)
    \(\begin{array}{l} \Leftrightarrow {x^2} - x - \frac{3}{4} \ge \frac{5}{4} \Leftrightarrow {x^2} - x - 2 \ge 0\\ \Leftrightarrow \left[ \begin{array}{l} x \le - 1\\ x \ge 2 \end{array} \right. \end{array}\)
    Vậy tập nghiệm bất phương trình là \(S = \left( { - \infty ; - 1} \right] \cup \left[ {2; + \infty } \right)\).

    Ví dụ 6:
    Giải bất phương trình\({\log _2}\left( {1 - {{\log }_9}x} \right) < 1.\)

    Lời giải:
    Điều kiện: \(\left\{ \begin{array}{l} x > 0\\ 1 - 2{\log _9}x > 0 \end{array} \right. \Leftrightarrow 3 > x > 0\)
    Khi đó: \({\log _2}(1 - 2{\log _9}x) < 1 \Leftrightarrow 1 - 2{\log _9}x < 2 \Leftrightarrow {\log _9}x > - \frac{1}{2} \Leftrightarrow x > \frac{1}{3}\)
    Kết hợp với điều kiện ta được \(S = \left( {\frac{1}{3};3} \right)\) là tập nghiệm của bất phương trình.

    Ví dụ 7:
    Giải bất phương trình\(\log _2^2x - 5{\log _2}x - 6 \le 0.\)

    Lời giải:
    Đặt \(t = {\log _2}x,\) khi đó phương trình trở thành:
    \(\begin{array}{l} {t^2} - 5t - 6 \le 0\\ \Leftrightarrow (t + 1)(t - 6) \le 0\\ \Leftrightarrow - 1 \le t \le 6 \end{array}\)
    Do đó ta có:
    \(\begin{array}{l} - 1 \le {\log _2}x \le 6\\ \Rightarrow {\log _2}\frac{1}{2} \le {\log _2}x \le {\log _2}64\\ \Rightarrow \frac{1}{2} \le x \le 64 \end{array}\)
    Vậy tập nghiệm bất phương trình là \(S = \left[ {\frac{1}{2};64} \right].\)

    Ví dụ 8:
    Giải bất phương trình \(x + {\log _3}\left( {x + 1} \right) > 3.\)

    Lời giải:
    ĐK: \(x>1\)
    Xét hàm số \(f(x) = x + {\log _3}(x + 1)\) trên \(\left( { - 1; + \infty } \right).\)
    Ta có \(f'(x) = 1 + \frac{1}{{(x + 1)\ln 3}} > 0\)
    \(\Rightarrow f(x)\) đồng biến trên \(\left( { - 1; + \infty } \right).\)
    Mặt khác \(f(2) = 3\)
    Do đó: \(f(x) > 3 \Rightarrow f(x) > f(2) \Rightarrow x > 2\)
    Vậy tập nghiệm của bất phương trình là: \(S = \left( {2; + \infty } \right).\)

    Theo LTTK Education tổng hợp