Bài 27 trang 205 SGK giải tích 12 nâng cao. Hãy tìm dạng lượng giác của các số phức: \(\overline z \,;\, - z;\,{1 \over {\overline z }};\,kz\,\left( {k \in \mathbb R^*} \right)\) trong mỗi trường hợp sau: \(a)\,z = r\left( {\cos \varphi + i\sin\varphi } \right)\,\left( {r > 0} \right);\) \(b)\,z = 1 + \sqrt 3 i.\) Giải \(\eqalign{ & a)\,\overline z = r\left( {\cos \varphi - i\sin \varphi } \right) = r\left( {\cos \left( { - \varphi } \right) + i\sin \left( { - \varphi } \right)} \right) \cr & - z = - r\left( {\cos \varphi + i\sin \varphi } \right) = r\left( {\cos \left( {\pi + \varphi } \right) + i\sin \left( {\pi + \varphi } \right)} \right) \cr & {1 \over z} = {z \over {\overline z .z}} = {1 \over r}\left( {\cos \varphi + i\sin \varphi } \right) \cr & k.z = kr\left( {\cos \varphi + i\sin \varphi } \right)\,\,\text{nếu}\,k > 0 \cr & kz = - kr\left( {\cos \left( {\pi + \varphi } \right) + i\sin \left( {\pi + \varphi } \right)} \right)\,\,\text{nếu}\,\,k < 0 \cr} \) \(b)\,z = 1 + \sqrt 3 i = 2\left( {{1 \over 2} + {{\sqrt 3 } \over 2}i} \right) = 2\left( {\cos {\pi \over 3} + i\sin {\pi \over 3}} \right)\) Áp dụng câu a) ta có: \(\overline z = 2\left( {\cos \left( { - {\pi \over 3}} \right) + i\sin \left( { - {\pi \over 3}} \right)} \right)\) \( - z = 2\left( {\cos {{4\pi } \over 3} + i\sin {{4\pi } \over 3}} \right);\,{1 \over {\overline z }} = {1 \over 2}\left( {\cos {\pi \over 3} + i\sin {\pi \over 3}} \right)\) \(\eqalign{ & kz = 2k\left( {\cos {\pi \over 3} + i\sin {\pi \over 3}} \right)\,\,\text{nếu}\,\,k > 0 \cr & kz = - 2k\left( {\cos {{4\pi } \over 3} + i\sin {{4\pi } \over 3}} \right)\,\text{nếu}\,\,k < 0 \cr} \) Bài 28 trang 205 SGK Giải tích 12 Nâng cao. Viết các số phức sau dưới dạng lượng giác: \(\eqalign{ & a)\,\,1 - i\sqrt 3 ;\,\,1 + i;\,\,(1 - i\sqrt 3 )(1 + i);\,\,{{1 - i\sqrt 3 } \over {1 + i}}; \cr & b)\,\,2i\left( {\sqrt 3 - i} \right); \cr & c)\,\,{1 \over {2 + 2i}}; \cr & d)\,\,z = \sin \varphi + i\cos \varphi \,(\varphi \in\mathbb R) \cr} \) Giải \(\eqalign{ & a)\,\,1 - i\sqrt 3 = 2\left( {{1 \over 2} - {{\sqrt 3 } \over 2}i} \right) = 2\left( {\cos \left( { - {\pi \over 3}} \right) + i\sin \left( { - {\pi \over 3}} \right)} \right);\,\,\,\,\, \cr & \,\,\,\,\,\,\,\,1 + i = \sqrt 2 \left( {{1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i} \right) = \sqrt 2 \left( {\cos \left( {{\pi \over 4}} \right) + i\sin \left( {{\pi \over 4}} \right)} \right);\, \cr & \,\,\,\,\,\,\,\,(1 - i\sqrt 3 )(1 + i) = 2\sqrt 2 \left( {{1 \over 2} - {{\sqrt 3 } \over 2}i} \right)\left( {{1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\sqrt 2 \left( {\cos \left( { - {\pi \over 3}} \right) + i\sin \left( { - {\pi \over 3}} \right)} \right)\left( {\cos {\pi \over 4} + i\sin {\pi \over 4}} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\sqrt 2 \left[ {\cos \left( {{\pi \over 4} - {\pi \over 3}} \right) + i\sin \left( {{\pi \over 4} - {\pi \over 3}} \right)} \right] \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\sqrt 2 \left[ {\cos \left( { - {\pi \over {12}}} \right) + i\sin \left( { - {\pi \over {12}}} \right)} \right];\,\, \cr & {{1 - i\sqrt 3 } \over {1 + i}} = \sqrt 2 \left[ {\cos \left( { - {\pi \over 3} - {\pi \over 4}} \right) + i\sin \left( { - {\pi \over 3} - {\pi \over 4}} \right)} \right] \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\;\;\, = \sqrt 2 \left[ {\cos \left( { - {7 \over {12}}\pi } \right) + i\sin \left( { - {7 \over {12}}\pi } \right)} \right]; \cr & b)\,\,2i = 2\left( {\cos {\pi \over 2} + i\sin {\pi \over 2}} \right) \cr & \,\,\,\,\,\,\,\left( {\sqrt 3 - i} \right) = 2\left( {{{\sqrt 3 } \over 2} - {1 \over 2}i} \right) = 2\left[ {\cos \left( { - {\pi \over 6}} \right) + i\sin \left( { - {\pi \over 6}} \right)} \right]; \cr & \,\,\,\,\,\,\,2i\left( {\sqrt 3 - i} \right) = 4\left[ {\cos \left( {{\pi \over 2} - {\pi \over 6}} \right) + i\sin \left( {{\pi \over 2} - {\pi \over 6}} \right)} \right] \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \;\;\,= 4\left[ {\cos \left( {{\pi \over 3}} \right) + i\sin \left( {{\pi \over 3}} \right)} \right] \cr & c)\,\,2 + 2i = 2\sqrt 2 \left( {{1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i} \right) = 2\sqrt 2 \left( {\cos {\pi \over 4} + i\sin {\pi \over 4}} \right)\, \cr & \Rightarrow {1 \over {2 + 2i}} = {1 \over {2\sqrt 2 }}\left[ {\cos \left( { - {\pi \over 4}} \right) + i\sin \left( { - {\pi \over 4}} \right)} \right] \cr & d)\,z = \,\sin \varphi + i\cos \varphi = \,\cos \left( {{\pi \over 2} - \varphi } \right) + i\sin\left( {{\pi \over 2} - \varphi } \right)(\varphi \in \mathbb R) \cr} \) Bài 29 trang 206 SGK Giải tích 12 nâng cao. Dùng công thức khai triển nhị thức Niu-tơn \({\left( {1 + i} \right)^{19}}\) và công thức Moa-vrơ để tính \(C_{19}^0 - C_{19}^2 + C_{19}^4 - ... + C_{19}^{16} - C_{19}^{18}.\) Giải Theo nhị thức Niu-tơn ta có: \({\left( {1 + i} \right)^{19}} = (C_{19}^0 + C_{19}^2{i^2} + C_{19}^4{i^2} + ... + C_{19}^{16}{i^2} + C_{19}^{18}{i^2}) + (C_{19}^1i + C_{19}^3{i^3} + ... + C_{19}^{19})\) Phần thực ở vế phải là: \(C_{19}^0 - C_{19}^2 + C_{19}^4 - ... + C_{19}^{16} - C_{19}^{18}.\) Mặt khác: \(\eqalign{ & {\left( {1 + i} \right)^{19}} = {\left[ {\sqrt 2 \left( {\cos {\pi \over 4} + i\sin {\pi \over 4}} \right)} \right]^{19}} = {\left( {\sqrt 2 } \right)^{19}}\left( {\cos {{19\pi } \over 4} + i\sin {{19\pi } \over 4}} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( {\sqrt 2 } \right)^{19}}\left( { - {{\sqrt 2 } \over 2} + i{{\sqrt 2 } \over 2}} \right) = - {2^9} + {2^9}i \cr & \Rightarrow C_{19}^0 - C_{19}^2 + C_{19}^4 - ... + C_{19}^{16} - C_{19}^{18} =- {2^9} = - 512. \cr} \) Bài 30 trang 206 SGK giải tích 12 nâng cao. Gọi M, M’ là các điểm trong mặt phẳng phức theo thứ tự biểu diễn các số \(z = 3 + i;\,z' = \left( {3 - \sqrt 3 } \right) + \left( {1 + 3\sqrt 3 } \right)i.\) a) Tính \({{z'} \over z};\) b) Chứng minh rằng hiệu số acgumen của z’ với acgumen của z là một số đo của góc lượng giác \(\left( {OM,OM'} \right)\). Tính số đo đó. Giải \(a)\,{{z'} \over z} = {{\left[ {3 - \sqrt 3 + \left( {1 + 3\sqrt 3 } \right)i} \right]\left( {3 - i} \right)} \over {10}} = 1 + \sqrt 3 i\) b) Xét tia Ox thì ta có: \(sđ\left( {OM,OM'} \right) = sđ\left( {Ox,OM'} \right) - sđ\left( {Ox,OM} \right)\) \( = \varphi ' - \varphi = acgumen{{z'} \over z}\) (sai khác \(k2\pi \)) (trong đó \(\varphi \) và \(\varphi '\) theo thứ tự là acgumen của z và z’). Từ đó do \({{z'} \over z} = 1 + \sqrt 3 i\) có acgumen là \({\pi \over 3} + k2\pi \,\,\left( {k \in Z} \right)\), nên góc lượng giác \(\left( {OM,OM'} \right)\) có số đo \({\pi \over 3} + k2\pi \,\,\left( {k \in\mathbb Z} \right)\) Bài 31 trang 206 SGK giải tích 12 nâng cao. Cho các số phức \({\rm{w}}= {{\sqrt 2 } \over 2}\left( {1 + i} \right)\) và \(\varepsilon = {1 \over 2}\left( { - 1 + i\sqrt 3 } \right)\) a) Chứng minh rằng \({z_o} = \cos {\pi \over {12}} + i\sin {\pi \over {12}},\,{z_1} = {z_o}\varepsilon ,\,{z_2} = {z_o}{\varepsilon ^2}\) là các nghiệm của phương trình \({z^3} - {\rm{w}} = 0;\) b) Biểu diễn hình học các số phức \({z_o},\,{z_1},\,{z_2}\) Giải a) Ta có: \({\rm{w}} = \cos {\pi \over 4} + i\sin {\pi \over 4}\) \(\eqalign{ & \varepsilon = \cos {{2\pi } \over 3} + i\sin {{2\pi } \over 3} \cr & z_o^3 = {\left( {\cos {\pi \over {12}} + i\sin {\pi \over {12}}} \right)^3} = \cos {\pi \over 4} + i\sin {\pi \over 4} ={\rm{w}} \cr & z_1^3 = {\left( {{z_o}\varepsilon } \right)^3} = z_o^3.{\varepsilon ^3} = {\rm{w}} \,\,\left( {\text{vì}\,\,\,{\varepsilon ^3} = 1} \right), \cr & z_2^3 = {\left( {z_o{\varepsilon ^2}} \right)^3} = z_o^3{\varepsilon ^6} = z_o^3 ={\rm{w}}\cr} \) b) Biểu diễn: Các điểm A, B, C lần lượt biểu diễn \({z_0},\,\,{z_1},\,\,{z_2}\) Nhận xét: A,B,C tạo thành một tam giác đều. Bài 32 trang 207 SGK giải tích 12 nâng cao. Sử dụng công thức Moa-vrơ để tính \(\sin 4\varphi \) và \(\cos 4\varphi \) theo các lũy thừa của \(\sin \varphi \) và \(\cos \varphi \) Giải Ta có: \(\cos 4\varphi + i\sin 4\varphi = {\left( {\cos \varphi + i\sin \varphi } \right)^4}\) \(\eqalign{ & = {\cos ^4}\varphi + 4\left( {{{\cos }^3}\varphi } \right)\left( {i\sin \varphi } \right) + 6\left( {{{\cos }^2}\varphi } \right)\left( {{i^2}} \right){\sin ^2}\varphi + 4\left( {\cos \varphi } \right)\left( {{i^3}{{\sin }^3}\varphi } \right) + {i^4}{\sin ^4}\varphi \cr & = {\cos ^4}\varphi - 6{\cos ^2}\varphi {\sin ^2}\varphi + {\sin ^4}\varphi + \left( {4{{\cos }^3}\varphi \sin \varphi - 4\cos \varphi {{\sin }^3}\varphi } \right)i. \cr} \) Từ đó: \(\cos 4\varphi = {\cos ^4}\varphi - 6{\cos ^2}\varphi {\sin ^2}\varphi + {\sin ^4}\varphi \) \(\sin 4\varphi = 4{\cos ^3}\varphi \sin \varphi - 4\cos \varphi {\sin ^3}\varphi \) Bài 33 trang 207 SGK giải tích 12 nâng cao. Tính \({\left( {\sqrt 3 - i} \right)^6};\,\,\,{\left( {{i \over {1 + i}}} \right)^{2004}};\,\,\,{\left( {{{5 + 3i\sqrt 3 } \over {1 - 2i\sqrt 3 }}} \right)^{21}}\) Giải \({\left( {\sqrt 3 - i} \right)^6} = {\left[ {2\left( {\cos \left( { - {\pi \over 6}} \right) + i\sin \left( { - {\pi \over 6}} \right)} \right)} \right]^6} = {2^6}\left[ {\cos \left( { - \pi } \right) + i\sin \left( { - \pi } \right)} \right] = - {2^6}\) \({i \over {i + 1}} = {{1 + i} \over 2} = {1 \over {\sqrt 2 }}\left( {\cos {\pi \over 4} + i\sin {\pi \over 4}} \right)\) nên \(\eqalign{ & {\left( {{1 \over {1 + i}}} \right)^{2004}} = {1 \over {{2^{1002}}}}\left( {\cos {{2004\pi } \over 4} + i\sin {{2004\pi } \over 4}} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over {{2^{1002}}}}\left( {\cos \pi + i\sin \pi } \right) = - {1 \over {{2^{1002}}}} \cr} \) \({{5 + 3i\sqrt 3 } \over {1 - 2i\sqrt 3 }} = {{\left( {5 + 3i\sqrt 3 } \right)\left( {1 + 2i\sqrt 3 } \right)} \over {1 + 12}} = {{ - 13 + 13i\sqrt 3 } \over {13}} = - 1 + i\sqrt 3 \) \( = 2\left( { - {1 \over 2} + {{\sqrt 3 } \over 2}i} \right) = 2\left( {\cos {{2\pi } \over 3} + i\sin {{2\pi } \over 3}} \right)\) Do đó: \({\left( {{{5 + 3i\sqrt 3 } \over {1 - 2i\sqrt 3 }}} \right)^{21}} = {2^{21}}\left( {\cos 14\pi + i\sin 14\pi } \right) = {2^{21}}\) Bài 34 trang 207 SGK giải tích 12 nâng cao. Cho số phức \({\rm{w}} = - {1 \over 2}\left( {1 + i\sqrt 3 } \right)\). Tìm các số nguyên dương n để \({{\rm{w}}^n}\) là số thực. Hỏi có chăng một số nguyên dương m để \({{\rm{w}}^m}\) là số ảo? Giải Ta có: \(\rm{w} = - {1 \over 2} - {{\sqrt 3 } \over 2}i = \cos {{4\pi } \over 3} + i\sin {{4\pi } \over 3}\) Suy ra \({\rm{w}^n} = \cos {{4\pi n} \over 3} + i\sin {{4\pi n} \over 3}\) \({\omega ^n}\) là số thực \( \Leftrightarrow \sin {{4n\pi } \over 3} = 0 \Leftrightarrow {{4n\pi } \over 3} = k\pi \,\,\left( {k \in \mathbb Z} \right)\) \( \Leftrightarrow 4n = 3k \Leftrightarrow n\) chia hết cho 3 (n nguyên dương) \({\rm{w} ^m}\) (m nguyên dương) là số ảo \( \Leftrightarrow \cos {{4m\pi } \over 3} = 0 \Leftrightarrow {{4m\pi } \over 3} = {\pi \over 2} + k\pi \,\,\left( {k \in \mathbb Z} \right)\) \( \Leftrightarrow 8m = 6k + 3\) (vô lí vì vế trái chẵn, vế phải lẻ). Vậy không có số nguyên dương m để \({\rm{w} ^m}\) là số ảo. Bài 35 trang 207 SGK giải tích 12 nâng cao. Viết dạng lượng giác của số phức z và của các căn bậc hai của z cho mỗi mỗi trường hợp sau: a) \(\left| z \right| = 3\) và một acgumen của iz là \({{5\pi } \over 4};\) b) \(\left| z \right| = {1 \over 3}\) và một acgumen của \({{\overline z } \over {1 + i}}\) là \( - {{3\pi } \over 4}.\) Giải a) Ta có \(i = \cos {\pi \over 2} + i\sin {\pi \over 2}\) nên acgumen của i là \({\pi \over 2}\). Một acgumen của \(z = {{iz} \over i}\) là \({{5\pi } \over 4} - {\pi \over 2} = {{3\pi } \over 4}\) Vậy \(z = 3\left( {\cos {{3\pi } \over 4} + i\sin {{3\pi } \over 4}} \right)\), từ đó dạng lượng giác của các căn bậc hai của z là \(\sqrt 3 \left( {\cos {{3\pi } \over 8} + i\sin {{3\pi } \over 8}} \right)\) và \(-\sqrt 3 \left( {\cos {{3\pi } \over 8} + i\sin {{3\pi } \over 8}} \right)=\sqrt 3 \left( {\cos {{11\pi } \over 8} + i\sin {{11\pi } \over 8}} \right)\). b) Gọi \(\varphi \) là acgumen của z là -\(\varphi \) là một acgumen của \(\overline z \) \(1 + i = \sqrt 2 \left( {{1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i} \right) = \sqrt 2 \left( {\cos {\pi \over 4} + i\sin {\pi \over 4}} \right)\) có một acgumen là \({\pi \over 4}\) nên một acgumen của \({{\overline z } \over {1 + i}}\) là \( - \varphi - {\pi \over 4}\). Theo đề bài ta có: \( - \varphi - {\pi \over 4} =- {{3\pi } \over 4} + k2\pi \,\,\left( {k \in \mathbb Z} \right) \Rightarrow \varphi = {\pi \over 2} + k2\pi \,\,\left( {k \in\mathbb Z} \right)\) Vậy \(z = {1 \over 3}\left( {\cos {\pi \over 2} + i\sin {\pi \over 2}} \right)\) Dạng lượng giác của căn bậc hai của z là: \({1 \over {\sqrt 3 }}\left( {\cos {\pi \over 4} + i\sin {\pi \over 4}} \right)\) và \( - {1 \over {\sqrt 3 }}\left( {\cos {\pi \over 4} + i\sin {\pi \over 4}} \right) = {1 \over {\sqrt 3 }}\left( {\cos {{5\pi } \over 4} + i\sin {{5\pi } \over 4}} \right)\) Bài 36 trang 207 SGK giải tích 12 nâng cao. Viết dạng lượng giác của các số phức sau: a) \(1 - i\tan {\pi \over 5}\) \(b)\,\tan {{5\pi } \over 8} + i;\) \(c){\mkern 1mu} 1 - \cos \varphi - i\sin \varphi {\mkern 1mu} \left( {\varphi \in\mathbb R,{\mkern 1mu} \varphi \ne k2\pi ,{\mkern 1mu} k \in\mathbb Z} \right){\rm{ }}\) Giải \(a)\,1 - i\tan {\pi \over 5} = 1 - i{{\sin {\pi \over 5}} \over {\cos {\pi \over 5}}} = {1 \over {\cos {\pi \over 5}}}\left( {\cos {\pi \over 5} - i\sin {\pi \over 5}} \right) = {1 \over {\cos {\pi \over 5}}}\left[ {\cos \left( { - {\pi \over 5}} \right) + i\sin \left( { - {\pi \over 5}} \right)} \right]\) \(b)\,\tan {{5\pi } \over 8} + i = {{ - 1} \over {\cos {{5\pi } \over 8}}}\left( { - \sin {{5\pi } \over 8} - i\cos {{5\pi } \over 8}} \right)\)(để ý rằng \(\cos {{5\pi } \over 8} < 0\)) \( = {1 \over {\cos {{3\pi } \over 8}}}\left( -{\cos {\pi \over 8} + i\sin {\pi \over 8}} \right) = {1 \over {\cos {{3\pi } \over 8}}}\left( {\cos {{7\pi } \over 8} + i\sin {{7\pi } \over 8}} \right)\) \(c)\,\,1 - \cos \varphi - i\sin \varphi = 2\sin^2 {\varphi \over 2} - 2i\sin {\varphi \over 2}\cos {\varphi \over 2} = 2\sin {\varphi \over 2}\left[ {\sin {\varphi \over 2} - i\cos {\varphi \over 2}} \right]\) Khi \(\sin {\varphi \over 2} > 0\) thì \(\,1 - \cos \varphi - i\sin \varphi = \left( {2\sin {\varphi \over 2}} \right)\left[ {\cos \left( {{\varphi \over 2} - {\pi \over 2}} \right) +i\sin\left( {{\varphi \over 2} - {\pi \over 2}} \right)} \right]\) là dạng lượng giác cần tìm. Khi \(\sin {\varphi \over 2} < 0\) thì \(\,1 - \cos \varphi - i\sin \varphi = \left( { - 2\sin {\varphi \over 2}} \right)\left[ {\cos \left( {{\varphi \over 2} + {\pi \over 2}} \right) + i\sin \left( {{\varphi \over 2} + {\pi \over 2}} \right)} \right]\) là dạng lượng giác cần tìm. Còn khi \(\sin {\varphi \over 2} = 0\) thì \(\,\,1 - \cos \varphi - i\sin \varphi = 0 = 0\left( {\cos \alpha + i\sin \alpha } \right)\,\,(\alpha \in\mathbb R\)tùy ý).