1. C THAY ĐỔI => XẢY RA HIỆN TƯỢNG CỘNG HƯỞNG \({\varphi _{{\bf{U}}/{\bf{I}}}} = {\bf{0}}\) VÀ \({{\bf{I}}_{{\bf{MAX}}}},{\rm{ }}{{\bf{U}}_{{\bf{RMAX}}}},{\rm{ }}{{\bf{U}}_{{\bf{LMAX}}}},{\rm{ }}{{\bf{U}}_{{\bf{LCMIN}}}}\) \({Z_L} = {Z_C}\) Khi đó: \(\begin{array}{l}{Z_{\min }} = R\\{I_{{\rm{max}}}} = \frac{U}{R}\\{P_{{\rm{max}}}} = {I^2}R = \frac{{{U^2}}}{R}\end{array}\) + Điện áp giữa hai đầu điện trở cực đại và bằng điện áp toàn mạch \({U_L} = {U_C} \to U = \sqrt {U_R^2 + {{({U_L} - {U_C})}^2}} = {U_R}\) + Điện áp hai đầu đoạn mạch cùng pha với cường độ dòng điện trong mạch: φ=0 2. C THAY ĐỔI ĐỂ UCMAX VÀ ĐIỆN ÁP HAI ĐẦU ĐOẠN MẠCH VUÔNG PHA VỚI URL Ta có: \({U_C} = I{Z_C} = \frac{{U{Z_C}}}{{\sqrt {{R^2} + {{({Z_L} - {Z_C})}^2}} }}\) Chia cả tử và mẫu cho ZL, ta được: \({U_C} = \frac{U}{{\sqrt {\frac{{{R^2}}}{{{Z_C}^2}} + \frac{{{{({Z_L} - {Z_C})}^2}}}{{{Z_C}^2}}} }} = \frac{U}{{\sqrt {\frac{{{R^2} + Z_L^2}}{{{Z_C}^2}} - \frac{{2{Z_L}}}{{{Z_C}}} + 1} }}\) Đặt \(y = \frac{{{R^2} + Z_L^2}}{{{Z_C}^2}} - \frac{{2{Z_L}}}{{{Z_C}}} + 1 = ({R^2} + Z_L^2){x^2} - 2{Z_L}x + 1\) với $x = \frac{1}{{{Z_C}}}$ Ta có UCmax khi ymin \({y_{\min }} \leftrightarrow x = - \frac{b}{{2{\rm{a}}}} = \frac{{2{Z_L}}}{{2({R^2} + Z_L^2)}} \to {Z_C} = \frac{{{R^2} + Z_L^2}}{{{Z_L}}}\) Khi đó: \({U_{Cm{\rm{ax}}}} = \frac{{U_R^2 + U_L^2}}{{{U_L}}} = \frac{{U\sqrt {{R^2} + Z_L^2} }}{R}\) Hệ quả: \(\left\{ \begin{array}{l}{U_{RL}} \bot {U_{AB}}\\U_{C\max }^2 = {U^2} + U_{RL}^2 = {U^2} + U_R^2 + U_L^2\\U_{C\max }^{}.{U_R} = U.{U_{RL}}\\\frac{1}{{U_R^2}} = \frac{1}{{{U^2}}} + \frac{1}{{U_{RL}^2}}\end{array} \right.\) 3. C THAY ĐỔI ĐỂ URCMAX Ta có: \({U_{RC}} = I{Z_{RC}} = \frac{{U\sqrt {{R^2} + Z_C^2} }}{{\sqrt {{R^2} + {{({Z_L} - {Z_C})}^2}} }} = \frac{{U\sqrt {{R^2} + Z_C^2} }}{{\sqrt {{R^2} + {Z_L}^2 - 2{Z_L}{Z_C} + {Z_C}^2} }} = \frac{U}{{\sqrt {1 + \frac{{ - 2{Z_L}{Z_C} + {Z_L}^2}}{{{R^2} + Z_C^2}}} }}\) \({U_{RLmax}} \leftrightarrow {\left( {1 + \frac{{ - 2{Z_L}{Z_C} + {Z_L}^2}}{{{R^2} + Z_C^2}}} \right)_{\min }}\) \(\begin{array}{l}y = 1 + \frac{{ - 2{Z_L}{Z_C} + {Z_L}^2}}{{{R^2} + Z_C^2}}\\y' = (1 + \frac{{ - 2{Z_L}{Z_C} + {Z_L}^2}}{{{R^2} + Z_C^2}})' = \frac{{2{Z_C}^2 - 2{R^2} - 2{Z_L}{Z_C}}}{{{{({R^2} + Z_C^2)}^2}}}\\y' = 0 \leftrightarrow 2{Z_C}^2 - 2{R^2} - 2{Z_L}{Z_C} = 0\\\left\{ \begin{array}{l}{Z_C} > 0\\x = - \frac{b}{{2{\rm{a}}}} \leftrightarrow {Z_C} = \frac{{{Z_L}}}{2}\end{array} \right.\end{array}\) Khi đó: \({y_{\min }} = \frac{{ - \Delta }}{{4{\rm{a}}}} = \frac{{4{R^2} - Z_L^2}}{4},{\rm{ }}{{\rm{U}}_{RCm{\rm{ax}}}} = \frac{U}{{\sqrt {\frac{{4{R^2} - Z_L^2}}{4}} }} = \frac{{2U}}{{\sqrt {4{R^2} - Z_L^2} }}\) 4. C THAY ĐỔI ĐỂ URL KHÔNG PHỤ THUỘC VÀO R URC không phụ thuộc vào R \( \leftrightarrow {U_{RL}} = {U_{AB}}\) Từ giản đồ: \(\begin{array}{l} \to {U_C} = 2{U_L}\\ \to {Z_C} = 2{Z_L}\end{array}\) 5. C THAY ĐỔI ĐỂ \({U_{RC}} \bot {U_{RL}}\) \(\begin{array}{l}{U_{RL}} \bot {U_{RC}}\\ \leftrightarrow \left\{ \begin{array}{l}\sin {\varphi _1} = c{\rm{os}}{\varphi _2}\\c{\rm{os}}{\varphi _1} = \left| {\sin {\varphi _2}} \right|\end{array} \right. \to \left| {\tan {\varphi _1}\tan {\varphi _2}} \right| = 1\\ \leftrightarrow \frac{{{U_L}}}{{{U_R}}}\frac{{{U_C}}}{{{U_R}}} = 1 \leftrightarrow {U_L}{U_C} = {U_R}^2 \leftrightarrow {Z_L}{Z_C} = {R^2}\end{array}\) 6. C=C1 HOẶC C=C2 THÌ UC CÓ CÙNG GIÁ TRỊ C1+C2=2Cmax 7. C THAY ĐỔI CÓ 2 GIÁ TRỊ LÀM CHO: \({{\bf{I}}_{\bf{1}}} = {{\bf{I}}_{\bf{2}}},{\rm{ }}{{\bf{P}}_{\bf{1}}} = {{\bf{P}}_{\bf{2}}},{\rm{ }}{\bf{cos}}{\varphi _{\bf{1}}} = {\bf{cos}}{\varphi _{\bf{2}}},{\rm{ }}{{\bf{Z}}_{\bf{1}}} = {{\bf{Z}}_{\bf{2}}}\) - Z1=Z2 \({R^2} + {({Z_L} - {Z_{C1}})^2} = {R^2} + {({Z_L} - {Z_{C2}})^2} \to \left| {{Z_L} - {Z_{C1}}} \right| = \left| {{Z_L} - {Z_{C2}}} \right|\) Với ZC2>ZC1 \( \to {Z_{C1}} + {Z_{C2}} = 2{Z_L}\) - I1=I2 hoặc P1=P2 => L=? để cộng hưởng điện \( \leftrightarrow \left\{ \begin{array}{l}I = {I_{{\rm{max}}}}\\{\varphi _u} = {\varphi _i}\\\left| {{\rm{cos}}\varphi } \right| = 1\end{array} \right. \to 2{Z_{Cm{\rm{ax}}}} = {Z_{C1}} + {Z_{C2}}\)