Giáo án Lý 12 - Chương 3 - PHƯƠNG PHÁP GIẢI BÀI TẬP MẠCH XOAY CHIỀU RLC - CÓ L THAY ĐỔI

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    1- L THAY ĐỔI => XẢY RA HIỆN TƯỢNG CỘNG HƯỞNG \({\varphi _{{\bf{u}}/{\bf{i}}}} = {\bf{0}}\) VÀ IMAX, URMAX, UCMAX, ULCMIN
    \({Z_L} = {Z_C}\)
    Khi đó:
    \({Z_{\min }} = R,{\rm{ }}{I_{{\rm{max}}}} = \frac{U}{R},{\rm{ }}{P_{{\rm{max}}}} = {I^2}R = \frac{{{U^2}}}{R}\)
    + Điện áp giữa hai đầu điện trở cực đại và bằng điện áp toàn mạch
    \({U_L} = {U_C} \to U = \sqrt {U_R^2 + {{({U_L} - {U_C})}^2}} = {U_R}\)
    + Điện áp hai đầu đoạn mạch cùng pha với cường độ dòng điện trong mạch: φ=0

    2- L THAY ĐỔI ĐỂ ULMAX VÀ ĐIỆN ÁP HAI ĐẦU ĐOẠN MẠCH VUÔNG PHA VỚI URC
    Ta có: \({U_L} = I{Z_L} = \frac{{U{Z_L}}}{{\sqrt {{R^2} + {{({Z_L} - {Z_C})}^2}} }}\)
    Chia cả tử và mẫu cho ZL, ta được: \({U_L} = \frac{U}{{\sqrt {\frac{{{R^2}}}{{{Z_L}^2}} + \frac{{{{({Z_L} - {Z_C})}^2}}}{{{Z_L}^2}}} }} = \frac{U}{{\sqrt {\frac{{{R^2} + Z_C^2}}{{{Z_L}^2}} - \frac{{2{Z_C}}}{{{Z_L}}} + 1} }}\)
    Đặt \(y = \frac{{{R^2} + Z_C^2}}{{{Z_L}^2}} - \frac{{2{Z_C}}}{{{Z_L}}} + 1 = ({R^2} + Z_C^2){x^2} - 2{Z_C}x + 1\) với $x = \frac{1}{{{Z_L}}}$
    Ta có ULmax khi ymin
    \({y_{\min }} \leftrightarrow x = - \frac{b}{{2{\rm{a}}}} = \frac{{2{Z_C}}}{{2({R^2} + Z_C^2)}} \to {Z_L} = \frac{{{R^2} + Z_C^2}}{{{Z_C}}}\)
    01.PNG
    Khi đó: \({U_{Lm{\rm{ax}}}} = \frac{{U_R^2 + U_C^2}}{{{U_C}}} = \frac{{U\sqrt {{R^2} + Z_C^2} }}{R}\)
    Hệ quả: \(\left\{ \begin{array}{l}{U_{RC}} \bot {U_{AB}}\\U_{L\max }^2 = {U^2} + U_{RC}^2 = {U^2} + U_R^2 + U_C^2\\U_{L\max }^{}.{U_R} = U.{U_{RC}}\\\frac{1}{{U_R^2}} = \frac{1}{{{U^2}}} + \frac{1}{{U_{RC}^2}}\end{array} \right.\)

    3- L THAY ĐỔI ĐỂ URLMAX
    Ta có: \({U_{RL}} = I{Z_{RL}} = \frac{{U\sqrt {{R^2} + Z_L^2} }}{{\sqrt {{R^2} + {{({Z_L} - {Z_C})}^2}} }} = \frac{{U\sqrt {{R^2} + Z_L^2} }}{{\sqrt {{R^2} + {Z_L}^2 - 2{Z_L}{Z_C} + {Z_C}^2} }} = \frac{U}{{\sqrt {1 + \frac{{ - 2{Z_L}{Z_C} + {Z_C}^2}}{{{R^2} + Z_L^2}}} }}\)
    URLmax \( \leftrightarrow {\left( {1 + \frac{{ - 2{Z_L}{Z_C} + {Z_C}^2}}{{{R^2} + Z_L^2}}} \right)_{\min }}\)
    \(\begin{array}{l}y = 1 + \frac{{ - 2{Z_L}{Z_C} + {Z_C}^2}}{{{R^2} + Z_L^2}}\\y' = (1 + \frac{{ - 2{Z_L}{Z_C} + {Z_C}^2}}{{{R^2} + Z_L^2}})' = \frac{{2{Z_L}^2 - 2{R^2} - 2{Z_L}{Z_C}}}{{{{({R^2} + Z_L^2)}^2}}}\\y' = 0 \leftrightarrow 2{Z_L}^2 - 2{R^2} - 2{Z_L}{Z_C} = 0\\\left\{ \begin{array}{l}{Z_L} > 0\\x = - \frac{b}{{2{\rm{a}}}} \leftrightarrow {Z_L} = \frac{{{Z_C}}}{2}\end{array} \right.\end{array}\)
    Khi đó: \({y_{\min }} = \frac{{ - \Delta }}{{4{\rm{a}}}} = \frac{{4{R^2} - Z_C^2}}{4},{\rm{ }}{{\rm{U}}_{RLm{\rm{ax}}}} = \frac{U}{{\sqrt {\frac{{4{R^2} - Z_C^2}}{4}} }} = \frac{{2U}}{{\sqrt {4{R^2} - Z_C^2} }}\)

    4 - L THAY ĐỔI ĐỂ URC KHÔNG PHỤ THUỘC VÀO R
    URC không phụ thuộc vào R
    \( \leftrightarrow {U_{RC}} = {U_{AB}}\)
    02.PNG
    Từ giản đồ:
    \(\begin{array}{l} \leftrightarrow {U_C} = {U_L} - {U_C}\\ \to {U_L} = 2{U_C}\\ \to {Z_L} = 2{Z_C}\end{array}\)

    5 - L THAY ĐỔI ĐỂ \({U_{RC}} \bot {U_{RL}}\)
    03.PNG
    \(\begin{array}{l}{U_{RL}} \bot {U_{RC}}\\ \leftrightarrow \left\{ \begin{array}{l}\sin {\varphi _1} = c{\rm{os}}{\varphi _2}\\c{\rm{os}}{\varphi _1} = \left| {\sin {\varphi _2}} \right|\end{array} \right. \to \left| {\tan {\varphi _1}\tan {\varphi _2}} \right| = 1\\ \leftrightarrow \frac{{{U_L}}}{{{U_R}}}\frac{{{U_C}}}{{{U_R}}} = 1 \leftrightarrow {U_L}{U_C} = {U_R}^2 \leftrightarrow {Z_L}{Z_C} = {R^2}\end{array}\)

    6 - L=L1 HOẶC L=L2 THÌ UL CÓ CÙNG GIÁ TRỊ
    \(\frac{1}{{{L_{{\rm{max}}}}}} = \frac{1}{2}(\frac{1}{{{L_1}}} + \frac{1}{{{L_2}}})\)
    VII - L THAY ĐỔI, CÓ 2 GIÁ TRỊ CỦA L LÀM CHO \({{\bf{I}}_{\bf{1}}} = {{\bf{I}}_{\bf{2}}},{\rm{ }}{{\bf{P}}_{\bf{1}}} = {{\bf{P}}_{\bf{2}}},{\rm{ }}{\bf{cos}}{\varphi _{\bf{1}}} = {\bf{cos}}{\varphi _{\bf{2}}},{\rm{ }}{{\bf{Z}}_{\bf{1}}} = {{\bf{Z}}_{\bf{2}}}\)
    - Z1=Z2
    \({R^2} + {({Z_{L1}} - {Z_C})^2} = {R^2} + {({Z_{L2}} - {Z_C})^2} \to \left| {{Z_{L1}} - {Z_C}} \right| = \left| {{Z_{L2}} - {Z_C}} \right|\)
    Với ZL2>ZL1 \( \to {Z_{L1}} + {Z_{L2}} = 2{Z_C}\)
    - I1=I2 hoặc P1=P2 => L=? để cộng hưởng điện
    \( \leftrightarrow \left\{ \begin{array}{l}I = {I_{{\rm{max}}}}\\{\varphi _u} = {\varphi _i}\\\left| {{\rm{cos}}\varphi } \right| = 1\end{array} \right. \to L = \frac{{{L_1} + {L_2}}}{2}\)