Hình học 12 nâng cao - Chương 1 - Bài 4. Thể tích của khối đa diện

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Bài 15 trang 28 Hình học 12 Nâng cao. Cho tam giác \(ABC\) cố định và một điểm \(S\) thay đổi. Thể tích của khối chóp \(S.ABC\) có thay đổi hay không nếu:
    a) Đỉnh \(S\) di chuyển trên một mặt phẳng song song với mặt phẳng \((ABC)\) ;
    b) Đỉnh \(S\) di chuyển trên một mặt phẳng song song với chỉ một cạnh đáy ;
    c) Đỉnh \(S\) di chuyển trên một đường thẳng song song với một cạnh đáy ?
    Giải
    a) Thể tích khối chóp \(S.ABC\) không đổi do diện tích đáy và chiều cao không đổi.
    b) Có thể thay đổi do chiều cao thay đổi.
    c) Không đổi do diện tích đáy và chiều cao không đổi.



    Bài 16 trang 28 SKG Hình học 12 Nâng cao. Hãy chia một khối tứ diện thành hai khối tứ diện sao cho tỉ số thể tích của hai khối tứ diện này bằng một số \(k>0\) cho trước.
    Giải
    [​IMG]
    Cho khối tứ diện \(ABCD\). Trên cạnh \(BC\) lấy điểm \(M\) sao cho \(MB = kMC\), khi đó \({S_{BMD}} = k{S_{CMD}} \Rightarrow {V_{ABMD}} = k{V_{AMCD}}\)

    Mặt phẳng \((AMD)\) chia khối tứ diện \(ABCD\) thành hai khối tứ diện có tỉ số thể tích bằng \(k\).



    Bài 17 trang 28 Hình học 12 Nâng cao. Tính thể tích của khối hộp \(ABCD.A'B'C'D'\), biết rằng \(AA'B'D'\) là khối tứ diện đều cạnh \(a\).
    Giải
    [​IMG]
    \(AA’B’D’\) là tứ diện đều nên đường cao \(AH\) có \(H\) là tâm của tam giác đều \(A’B’D’\) cạnh \(a\) do đó”
    \(\eqalign{
    & A'H = {2 \over 3}A'O' = {2 \over 3}{{a\sqrt 3 } \over 2} = {{a\sqrt 3 } \over 3} \cr
    & \Rightarrow A{H^2} = AA{'^2} - A'{H^2} = {a^2} - {{{a^2}} \over 3} = {{2{a^2}} \over 3} \cr
    & \Rightarrow AH = a\sqrt {{2 \over 3}} = {{a\sqrt 6 } \over 3} \cr} \)
    Diện tích tam giác đều \(A’B’D’\): \({S_{A'B'D'}} = {{{a^2}\sqrt 3 } \over 4}\)
    Diện tích hình thoi \(A’B’C’D’\): \({S_{A'B'C'D'}} = 2{S_{B'C'D'}} = {{{a^2}\sqrt 3 } \over 2}\)
    Vậy thể tích khối hộp đã cho là \(V = B.h = {{{a^2}\sqrt 3 } \over 2}.{{a\sqrt 6 } \over 3} = {{{a^3}\sqrt 2 } \over 2}\)



    Bài 18 trang 28 SGK Hình học 12 Nâng cao. Tính thể tích của khối lăng trụ \(n\)-giác đều có tất cả các cạnh đều bằng \(a\).
    Giải
    [​IMG]
    Gọi \({A_1}{A_2}...{A_n}\) là đáy của khối lăng trụ \(n\)-giác đều và \(O\) là tâm của đáy.
    Gọi \(I\) là trung điểm của \({A_1}{A_2}\) ta có \(OI \bot {A_1}{A_2}\).
    Trong \(\Delta {A_1}IO\): \(\cot \widehat {{A_1}IO} = {{OI} \over {{A_1}I}} \Rightarrow OI = {a \over 2}\cot {\pi \over n}\).
    Diện tích đáy của khối lăng trụ đều là \(S = n.{S_{O{A_1}{A_2}}} = n{1 \over 2}a.{a \over 2}\cot {\pi \over n} = {1 \over 4}n{a^2}\cot {\pi \over n}\)
    Chiều cao của khối lăng trụ đều là \(a\) nên thể tích của nó là:\(V = B.h = {1 \over 4}n{a^3}.\cot {\pi \over n}\)



    Bài 19 trang 28 SGK Hình học 12 Nâng cao. Cho khối lăng trụ đứng \(ABC.A’B’C’\) có đáy là tam giác \(ABC\) vuông tại \(A, AC = b\). \(\widehat {ACB} = {60^0}\). Đường thẳng \(BC’\) tạo với mp \((AA’C’C)\) một góc \({30^0}\).
    a) Tính độ dài đoạn thẳng \(AC\).
    b) Tính thể tích khối lăng trụ đã cho.
    Giải
    [​IMG]
    a) Ta có: \(BA \bot AC\) và \(BA \bot AA'\) nên \(BA \bot \left( {ACC'A'} \right)\)
    Vậy \(AC’\) là hình chiếu của \(BC’\) trên mp \((ACC’A’)\) nên \(\widehat {AC'B} = {30^0}\)
    Trong tam giác vuông \(BAC’\), ta có: \(\cot {30^0} = {{AC'} \over {AB}} \Rightarrow AC' = AB.cot{30^0} = AC.\tan {60^0}.\cot {30^0} = b\sqrt 3 .\sqrt 3 = 3b\)
    b) Trong tam giác vuông \(ACC’\), ta có: \(CC{'^2} = AC{'^2} - A{C^2} = 9{b^2} - {b^2} = 8{b^2} \Rightarrow CC' = 2\sqrt 2 b\)
    Diện tích là: \({S_{ABC}} = {1 \over 2}AB.AC = {1 \over 2}b\sqrt 3 .b = {{{b^2}\sqrt 3 } \over 2}\)
    Thể tích khối lăng trụ \(V = S.h = {{{b^2}\sqrt 3 } \over 2}.2\sqrt 2 b = {b^3}\sqrt 6 \)



    Bài 20 trang 28 SGK Hình học 12 Nâng cao. Cho khối lăng trụ tam giác \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\), điểm \(A'\) cách đều ba điểm \(A, B, C\), cạnh bên \(AA'\) tạo với mặt phẳng đáy một góc \(60^0\).
    a) Tính thể tích của khối lăng trụ đó.
    b) Chứng minh rằng mặt bên \(BCCB'\) là một hình chữ nhật.
    c) Tính tổng diện tích các mặt bên của hình lăng trụ \(ABC.A'B'C\) (tổng đó gọi là diện tích xung quanh của hình (hoặc khối) lăng trụ đã cho).
    Giải
    [​IMG]
    a) Gọi \(O\) là tâm của tam giác đều \(ABC\). Vì \(A’\) cách đều ba đỉnh \(A, B, C\) nên \(A’\) nằm trên trục của \(\Delta ABC\), do đó \(A'O \bot mp\left( {ABC} \right)\)
    \(AO\) là hình chiếu của \(AA’\) trên mp \((ABC)\). Do đó \(\widehat {A'AO} = {60^0}\)
    Trong tam giác vuông \(A’OA\) ta có: \(\tan {60^0} = {{A'O} \over {AO}} \Rightarrow A'O = AO.\tan {60^0} = {2 \over 3}.{{a\sqrt 3 } \over 2}.\sqrt 3 = a\)
    Vậy thể tích khối lăng trụ là \(V = B.h = {S_{ABC}}.A'O = {{{a^2}\sqrt 3 } \over 4}.a = {{{a^3}\sqrt 3 } \over 4}\)
    b) Vì \(BC \bot AO \Rightarrow BC \bot \left( {AOA'} \right) \Rightarrow BC \bot AA'\) hay \(BC \bot BB'\) . Vậy \(BCC’B’\) là hình chữ nhật.
    c) Gọi \(H\) là trung điểm của \(AB\). Ta có \(AB \bot \left( {A'HO} \right) \Rightarrow A'H \bot AB\).
    Trong tam giác vuông \(A’OH\), ta có: \(A'{H^2} = A'{O^2} + O{H^2} = {a^2} + {\left( {{{a\sqrt 3 } \over 6}} \right)^2} = {{13{a^2}} \over {12}} \Rightarrow A'H = {{a\sqrt {13} } \over {2\sqrt 3 }}\)
    Diện tích hình bình hành \(ABB’A’\) : \({S_{ABB'A'}} = AB.AH = {a^2}{{\sqrt {13} } \over {2\sqrt 3 }}\)
    Tương tự \({S_{ACC'A'}} = {{{a^2}\sqrt {13} } \over {2\sqrt 3 }}\)
    Diện tích hình chữ nhật \(BCC’B’\) là: \({S_{BCC'B'}} = BB'.BC = AA'.BC = {{AO} \over {\cos {{60}^0}}}.a = {{2{a^2}\sqrt 3 } \over 3}\)
    Vậy diện tích xung quanh hình lăng trụ là: \({S_{xq}} = 2{S_{AA'B'B}} + {S_{BCC'B'}} = {{{a^2}\sqrt {13} } \over {\sqrt 3 }} + {{2{a^2}\sqrt 3 } \over 3} = {{{a^2}\sqrt 3 } \over 3}\left( {\sqrt {13} + 2} \right)\)



    Bài 21 trang 28 SGK Hình học 12 Nâng cao. Cho điểm \(M\) nằm trong hình tứ diện đều \(ABCD\). Chứng minh rằng tổng các khoảng cách từ \(M\) tới bốn mặt của hình tứ diện là một số không phụ thuộc vào vị trí của điểm \(M\). Tổng đó bằng bao nhiêu nếu cạnh của tứ diện đều bằng \(a\) ?
    Giải
    [​IMG]
    Gọi \({H_1},{H_2},{H_3},{H_4}\) lần lượt là hình chiếu của điểm M trên các mặt phẳng \((BCD) , (ACD) , (ABD) , (ABC)\).
    Khi đó \(M{H_1},M{H_2},M{H_3},M{H_4}\) lần lượt là khoảng cách từ điểm \(M\) tới các mặt phẳng đó. Các mặt bên của tứ diện đều có cùng diện tích, ta kí hiệu các diện tích đó là \(S\) và gọi \(h\) là chiều cao của tứ diện đều. Ta có:
    \(\eqalign{
    & {V_{MBCD}} + {V_{MACD}} + {V_{MABD}} + {V_{MABC}} = {V_{ABCD}} \cr
    & \Leftrightarrow {1 \over 3}S.M{H_1} + {1 \over 3}S.M{H_2} + {1 \over 3}S.M{H_3} + {1 \over 3}S.M{H_4} = {1 \over 3}S.h \cr
    & \Leftrightarrow M{H_1} + M{H_2} + M{H_3} + M{H_4} = h \cr} \)
    Vậy tổng các khoảng cách từ điểm \(M\) tới bốn mặt của tứ diện đều không phụ thuộc vào vị trí của điểm \(M\) nằm trong tứ diện đó.
    Nếu tứ diện đều có cạnh bằng \(a\), ta tính \(h\).
    Gọi \(H\) là trực tâm tam giác đều \(BCD\) và \(M\) là trung điểm của \(CD\).
    [​IMG]
    Ta có:
    \(\eqalign{
    & {h^2} = A{H^2} = A{M^2} - H{M^2} = {\left( {{{a\sqrt 3 } \over 2}} \right)^2} - {\left( {{1 \over 3}.{{a\sqrt 3 } \over 2}} \right)^2} \cr
    & \,\,\,\,\,\, = {{3{a^2}} \over 4} - {{{a^2}} \over {12}} = {{2{a^3}} \over 3} \Rightarrow h = {{a\sqrt 6 } \over 3} \cr} \)
    Tổng khoảng cách nói trên bằng \({{a\sqrt 6 } \over 3}\).



    Bài 22 trang 28 SGK Hình học 12 Nâng cao. Cho khối lăng trụ tam giác đều \(ABC.A'B’C\). Gọi \(M\) là trung điểm của \(AA’\). Mặt phẳng đi qua \(M, B’, C\) chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.
    Giải
    [​IMG]
    Gọi độ dài cạnh đáy của lăng trụ là \(a\), độ dài cạnh bên của lăng trụ là \(b\).
    Kẻ đường cao \(CH\) của tam giác \(ABC\) thì \(CH \bot \left( {ABB'A'} \right),CH = {{a\sqrt 3 } \over 2}\)
    Diện tích hình thang \(ABB’M\) là: \({S_{ABB'M}} = {1 \over 2}\left( {AM + BB'} \right)AB = {1 \over 2}\left( {{b \over 2} + b} \right).a = {{3ab} \over 4}\)
    Thể tích khối chóp \(C.ABB’M\) là: \({V_{C.ABB'M}} = {1 \over 3}{S_{ABB'M}}.CH = {1 \over 3}{{3ab} \over 4}.{{a\sqrt 3 } \over 2} = {{{a^2}b\sqrt 3 } \over 8}\)
    Thể tích khối lăng trụ là: \({V_{ABC.A'B'C'}} = {S_{ABC}}.AA' = {{{a^2}\sqrt 3 } \over 4}.b = {{{a^2}b\sqrt 3 } \over 4} = 2{V_{C.ABB'M}}\)
    Vậy \({V_{C.ABB'M}} = {V_{B'.A'C'CM}}\)
    Chú ý: Có thể chứng minh được hai khối chóp \(C.ABB’M\) và \(B’A’C’CM\) có cùng chiều cao và có diện tích đáy bằng nhau nên chúng có thể tích bằng nhau.



    Bài 23 trang 29 SGK Hình học 12 Nâng cao. Cho khối chóp tam giác \(S.ABC\). Trên ba đường thẳng \(SA, SB,SC\) lần lượt lấy ba điểm \(A’, B’, C'\) khác với \(S\). Gọi \(V\) và \(V’\) lần lượt là thể tích của các khối chóp \(S.ABC\) và \(S.A'B'C'\). Chứng minh rằng:
    \({V \over {V'}} = {{SA} \over {SA'}}.{{SB} \over {SB'}}.{{SC} \over {SC'}}\)
    Giải
    [​IMG]
    Gọi \(H\) và \(H’\) lần lượt là hình chiếu của \(A\) và \(A’\) trên mp \((SBC)\). Khi đó \(3\) điểm \(S, H, H’\) thẳng hàng (vì chúng là hình chiếu của ba điểm thẳng hàng \(S, A, A’\) trên mp \((SBC)\)) và vì \(A’H’ // AH\) nên \({{AH} \over {A'H'}} = {{SA} \over {SA'}}\). Ta có:
    \({{{S_{SBC}}} \over {{S_{SB'C'}}}} = {{{1 \over 2}SB.SC.sin\widehat {BSC}} \over {{1 \over 2}SB'.SC'.sin\widehat {B'SC'}}} = {{SB} \over {SB'}}.{{SC} \over {SC'}}\)
    Suy ra \({V \over {V'}} = {{{V_{A.SBC}}} \over {{V_{A'.SB'C'}}}} = {{{1 \over 3}{S_{SBC}}.AH} \over {{1 \over 3}{S_{SB'C'}}.A'H'}} = {{SA} \over {SA'}}.{{SB} \over {SB'}}.{{SC} \over {SC'}}\)



    Bài 24 trang 29 SKG Hình học 12 Nâng cao. Khối chóp \(S.ABCD\) có đáy là hình bình hành, \(M\) là trung điểm của cạnh \(SC\). Mặt phẳng \((P)\) đi qua \(AM\), song song với \(BD\) chia khối chóp thành hai phần. Tính tỉ số thể tích cùa hai phần đó.
    Giải
    [​IMG]
    Gọi \(O\) là tâm hình bình hành \(ABCD\). Gọi \(G\) là giao điểm của \(SO\) và \(AM\) thì \(G\) là trọng tâm của tam giác \(SAC\) nên \({{SG} \over {SO}} = {2 \over 3}\).
    Mặt phẳng \((P)\) song song với \(BD\) nên \((P)\) cắt mp \((SBD)\) theo giao tuyến \(B’D’\) đi qua \(G\) và \(B’D’ // BD\), trong đó \(B’, D’\) lần lượt trên \(SB\) và \(SD\).
    có \(B’D’ // BD\) nên \({{SB'} \over {SB}} = {{SD'} \over {SD}} = {{SG} \over {SO}} = {2 \over 3}\)
    Mặt phẳng \((P)\) chia khối chóp \(S.ABCD\) thành hai phần: Khối chóp \(S.AB’MD’\) và khối đa diện \(ABCDB’MD’\).
    \({{{V_{S.AB'D'}}} \over {{V_{S.ABD}}}} = {{SA} \over {SA}}.{{SB'} \over {SB}}.{{SD'} \over {SD}} = {2 \over 3}.{2 \over 3} = {4 \over 9} \Rightarrow {{{V_{S.AB'D'}}} \over {{V_{S.ABCD}}}} = {2 \over 9}\)
    (Vì \({V_{S.ABCD}} = 2{V_{S.ABD}}\))
    \({{{V_{S.MB'D'}}} \over {{V_{S.CBD}}}} = {{SM} \over {SC}}.{{SB'} \over {SB}}.{{SD'} \over {SD}} = {1 \over 2}.{2 \over 3}.{2 \over 3} = {2 \over 9} \Rightarrow {{{V_{S.MB'D'}}} \over {{V_{S.ABCD}}}} = {1 \over 9}\)
    Từ đó suy ra \({{{V_{S.AB'MD'}}} \over {{V_{S.ABCD}}}} = {{{V_{S.AB'D'}} + {V_{S.MB'D'}}} \over {{V_{S.ABCD}}}} = {2 \over 9} + {1 \over 9} = {1 \over 3}\)
    Vậy \({{{V_{S.AB'MD'}}} \over {{V_{ABCDB'MD'}}}} = {1 \over 2}\)



    Bài 25 trang 29 SGK Hình học 12 Nâng cao. Chứng minh rằng nếu có phép vị tự tỉ số \(k\) biến tứ diện \(ABCD\) thành tứ diện \(A’B’C’D’\)a thì \({{{V_{A'B'C'D'}}} \over {{V_{ABCD}}}} = {\left| k \right|^3}\)
    Giải
    Giả sử phép vị tự \(f\) tỉ số \(k\) biến hình chóp \(A.BCD\) thành hình chóp \(A’.B’C’D’\). Khi đó, \(f\) biến đường cao \(AH\) của hình chóp \(A.BCD\) thành đường cao \(A‘H’\) của hình chóp \(A’.B’C’D’\) do đó \(A'H' = \left| k \right|AH\). Tam giác \(BCD\) được biến thành tam giác \(B’C’D’\) qua \(f\) nên \({S_{B'C'D'}} = {k^2}{S_{BCD}}\)
    Từ đó suy ra \({{{V_{A'B'C'D'}}} \over {{V_{ABCD}}}} = {{{1 \over 3}{S_{B'C'D'}}.A'H'} \over {{1 \over 3}{S_{BCD}}.AH}} = {\left| k \right|^3}\)