Periodic billiard trajectories in polyhedra - Nicolas Bedaride We consider the billiard map inside a polyhedron. We give a condition for the stability of the periodic trajectories. We apply this result to the case of the tetrahedron. We deduce the existence of an open set of tetrahedra which have a periodic orbit of length four (generalization of Fagnano's orbit for triangles), moreover we can study completely the orbit of points along this coding. ✪ ✪ ✪ ✪ ✪ Hidden Content: **Hidden Content: Content of this hidden block can only be seen by members of (usergroups: V.I.P Downloader).** Theo LTTK Education