Phương pháp học và giải bài tập chuyên đề Mệnh đề và tập hợp

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Gesturing emojis.png

    LTTK Education xin gửi đến quý bạn đọc tuyển chọn tài liệu Phương pháp học và giải bài tập chuyên đề Mệnh đề và tập hợp do tác giả Lư Sĩ Pháp biên soạn. Bạn vui lòng xem tài liệu trực tuyến tại đây và chúng tôi hỗ trợ tính năng tải về nhằm phục vụ việc đọc và học offline tốt hơn nhé!
    Tài liệu gồm 37 trang, tuyển tập kiến thức cần nắm, bài tập mẫu và bài tập tự luyện (trắc nghiệm – tự luận) chủ đề mệnh đề và tập hợp, trợ giúp học sinh khối 10 trong quá trình học tập kiến thức Đại số 10 chương 1. Nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định.
    upload_2020-5-27_22-2-56.png Nội dung gồm 3 phần:
    upload_2020-5-27_22-8-31.png Phần 1. Kiến thức cần nắm
    upload_2020-5-27_22-8-32.png Phần 2. Dạng bài tập có hướng dẫn giải và bài tập đề nghị
    upload_2020-5-27_22-8-33.png Phần 3. Phần bài tập trắc nghiệm.

    upload_2020-5-27_22-2-59.png Cấu trúc nội dung tài liệu:
    upload_2020-5-27_22-3-53.png Bài 1. MỆNH ĐỀ
    upload_2020-5-27_22-6-1.png A. KIẾN THỨC CẦN NẮM
    upload_2020-5-27_22-6-31.png 1. Mệnh đề là gì?
    upload_2020-5-27_22-6-34.png 2. Mệnh đề phủ định
    upload_2020-5-27_22-6-35.png 3. Mệnh đề kéo theo và mệnh đề đảo
    upload_2020-5-27_22-6-37.png 4. Mệnh đề tương đương
    upload_2020-5-27_22-6-38.png 5. Khái niệm mệnh đề chứa biến
    upload_2020-5-27_22-6-39.png 6. Các kí hiệu “với mọi” và “tồn tại”
    upload_2020-5-27_22-6-40.png 7. Mệnh đề phủ định của mệnh đề có kí hiệu “với mọi” và “tồn tại”
    B. BÀI TẬP & HƯỚNG DẪN GIẢI
    C. BÀI TẬP ĐỀ NGHỊ
    D. BÀI TẬP TRẮC NGHIỆM
    upload_2020-5-27_22-3-58.png BÀI 2. TẬP HỢP
    upload_2020-5-27_22-5-8.png A. KIẾN THỨC CẦN NẮM
    upload_2020-5-27_22-6-53.png 1. Khái niệm tập hợp và phần tử
    upload_2020-5-27_22-6-54.png 2. Cách xác định tập hợp
    upload_2020-5-27_22-6-55.png 3. Tập hợp rỗng
    upload_2020-5-27_22-7-4.png 4. Tập hợp con
    upload_2020-5-27_22-7-5.png 5. Hai tập hợp bằng nhau
    upload_2020-5-27_22-5-11.png B. BÀI TẬP & HƯỚNG DẪN GIẢI
    upload_2020-5-27_22-5-13.png C. BÀI TẬP ĐỀ NGHỊ
    upload_2020-5-27_22-5-15.png D. BÀI TẬP TRẮC NGHIỆM
    upload_2020-5-27_22-4-0.png BÀI 3. CÁC PHÉP TOÁN TRÊN TẬP HỢP
    upload_2020-5-27_22-5-22.png A. KIẾN THỨC CẦN NẮM
    upload_2020-5-27_22-7-8.png 1. Giao của hai tập hợp
    upload_2020-5-27_22-7-9.png 2. Hợp của hai tập hợp
    upload_2020-5-27_22-7-10.png 3. Hiệu và phần bù của hai tập hợp
    upload_2020-5-27_22-5-24.png B. BÀI TẬP & HƯỚNG DẪN GIẢI
    upload_2020-5-27_22-5-26.png C. BÀI TẬP ĐỀ NGHỊ
    upload_2020-5-27_22-5-34.png D. BÀI TẬP TRẮC NGHIỆM
    upload_2020-5-27_22-4-3.png BÀI 4. CÁC TẬP HỢP SỐ
    upload_2020-5-27_22-5-36.png A. KIẾN THỨC CẦN NẮM
    upload_2020-5-27_22-7-13.png 1. Các tập hợp số đã học
    upload_2020-5-27_22-7-14.png 2. Các tập con thường dùng của tập hợp số thực R
    upload_2020-5-27_22-5-38.png B. BÀI TẬP & HƯỚNG DẪN GIẢI
    upload_2020-5-27_22-5-39.png C. BÀI TẬP ĐỀ NGHỊ
    upload_2020-5-27_22-5-40.png D. BÀI TẬP TRẮC NGHIỆM
    upload_2020-5-27_22-4-6.png BÀI 5. SỐ GẦN ĐÚNG – SAI SỐ
    upload_2020-5-27_22-5-42.png A. KIẾN THỨC CẦN NẮM
    upload_2020-5-27_22-7-17.png 1. Số gần đúng
    upload_2020-5-27_22-7-21.png 2. Sai số tuyệt đối và sai số tương đối
    upload_2020-5-27_22-7-23.png 3. Quy tròn của số gần đúng
    upload_2020-5-27_22-5-43.png B. BÀI TẬP & HƯỚNG DẪN GIẢI
    upload_2020-5-27_22-5-44.png C. BÀI TẬP ĐỀ NGHỊ
    upload_2020-5-27_22-5-45.png D. BÀI TẬP TRẮC NGHIỆM
    upload_2020-5-27_22-4-8.png ÔN TẬP CHƯƠNG
    upload_2020-5-27_22-5-48.png BÀI TẬP TỰ LUYỆN
    upload_2020-5-27_22-5-49.png BÀI TẬP TRẮC NGHIỆM

    upload_2020-5-27_22-3-7.png Trích dẫn từ nội dung tài liệu:
    upload_2020-5-27_22-8-23.png Câu 3. Cho mệnh đề P: “Tam giác nào cũng có ít nhất một góc bé hơn hoặc bằng 60o" có mệnh đề phủ định là
    A. Tồn tại một tam giác có tất cả các góc đều lớn hơn hoặc bằng 60o.
    B. Tam giác nào cũng có tất cả các góc đều lớn hơn 60o.
    C. Tồn tại một tam giác có tất cả các góc đều lớn hơn 60o.
    D. Tồn tại một tam giác có ít nhất một góc bé hơn hoặc bằng 60o.
    Câu 35. Mệnh đề nào dưới đây sai?
    A. Một tam giác là tam giác đều khi và chỉ khi nó có hai trung tuyến bằng nhau và một góc bằng 60o.
    B. Hai tam giác bằng nhau khi chúng có diện tích bằng nhau.
    C. Hai tam giác bằng nhau khi và chỉ khi chúng đồng dạng và có một cạnh tương ứng bằng nhau.
    D. Một tam giác vuông khi và chỉ khi nó có một góc trong bằng tổng hai góc còn lại.
    Hy vọng tài liệu này sẽ mang lại nhiều điều bổ ích cho quý bạn đọc. Chúc quý bạn đọc thành công!



    ✪ ✪ ✪ ✪ ✪


    Link tải tài liệu:

    LINK TẢI TÀI LIỆU