Sách bài tập Toán 10 - Đại số 10 nâng cao - Chương VI - Ôn tập chương VI

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Câu 6.59 trang 206 SBT Đại số 10 Nâng cao.
    Cho \(\sin \alpha - \cos \alpha = m\). Hãy tính theo \(m\)
    a) \(\sin \alpha \cos \alpha ;\)
    b) \(\left| {\sin \alpha + \cos \alpha } \right|;\)
    c) \({\sin ^3}\alpha - {\cos ^3}\alpha ;\)
    d) \({\sin ^6}\alpha + {\cos ^6}\alpha .\)
    Giải:
    Cho \(\sin \alpha - \cos \alpha = m\) ta có
    a)
    \(\begin{array}{l}\sin \alpha \cos \alpha = - \dfrac{1}{2}\left[ {{{\left( {\sin \alpha - \cos \alpha } \right)}^2} - 1} \right]\\ = \dfrac{{1 - {m^2}}}{2}.\end{array}\)
    b)
    \(\begin{array}{l}{\left( {\sin \alpha + \cos \alpha } \right)^2} = 1 + 2\sin \alpha \cos \alpha \\ = 1 + 1 - {m^2} = 2 - {m^2}.\end{array}\)
    Từ đó \(\left| {\sin \alpha + \cos \alpha } \right| = \sqrt {2 - {m^2}} .\)
    c)
    \(\begin{array}{l}{\sin ^3}\alpha - {\cos ^3}\alpha \\ = {\left( {\sin \alpha - \cos \alpha } \right)^3} - 3\sin \alpha \cos \alpha \left( {\sin \alpha - \cos \alpha } \right)\\ = {m^3} + 3\left( {\dfrac{{1 - {m^2}}}{2}} \right)m\\ = \dfrac{{m\left( {3 - {m^2}} \right)}}{2}.\end{array}\)
    d)
    \(\begin{array}{l}{\sin ^6}\alpha + {\cos ^6}\alpha \\ = {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^3} - 3{\sin ^2}\alpha {\cos ^2}\alpha \left( {{{\sin }^2}\alpha + co{s^2}\alpha } \right)\\ = 1 - 3{\left( {\dfrac{{1 - {m^2}}}{2}} \right)^2}\\ = \dfrac{{ - 3{m^4} + 6{m^2} + 1}}{4}.\end{array}\)

    Câu 6.60 trang 206 SBT Đại số 10 Nâng cao.
    Tính
    a) \({\sin ^2}{15^0} + {\sin ^2}{35^0} + {\sin ^2}{55^0} + {\sin ^2}{75^0};\)
    b) \({\sin ^2}\dfrac{\pi }{8} + {\sin ^2}\dfrac{{3\pi }}{8} + {\sin ^2}\dfrac{{5\pi }}{8} + {\sin ^2}\dfrac{{7\pi }}{8};\)
    c) \({\cos ^2}\dfrac{\pi }{{12}} + {\cos ^2}\dfrac{{3\pi }}{{12}} + {\cos ^2}\dfrac{{5\pi }}{{12}} + {\cos ^2}\dfrac{{7\pi }}{{12}} + {\cos ^2}\dfrac{{9\pi }}{{12}} + {\cos ^2}\dfrac{{11\pi }}{{12}}.\)
    Giải:
    a) Vì \(\sin {75^0} = \cos {15^0},\sin {55^0} = \cos {35^0}\) nên
    \({\sin ^2}{15^0} + {\sin ^2}{35^0} + {\sin ^2}{55^0} + {\sin ^2}{75^0} = 2.\)
    b) Vì
    \(\begin{array}{l}\sin \dfrac{{7\pi }}{8} = \sin \left( {\dfrac{{3\pi }}{8} + \dfrac{\pi }{2}} \right) = \cos \dfrac{{3\pi }}{8};\\\sin \dfrac{{5\pi }}{8} = \sin \left( {\dfrac{\pi }{8} + \dfrac{\pi }{2}} \right) = \cos \dfrac{\pi }{8}\end{array}\)
    nên \({\sin ^2}\dfrac{\pi }{8} + {\sin ^2}\dfrac{{3\pi }}{8} + {\sin ^2}\dfrac{{5\pi }}{8} + {\sin ^2}\dfrac{{7\pi }}{8} = 2.\)
    c) Tương tự
    \(\begin{array}{l}\cos \dfrac{{11\pi }}{{12}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{{5\pi }}{{12}}} \right) = - \sin \dfrac{{5\pi }}{{12}},\\\cos \dfrac{{9\pi }}{{12}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{{3\pi }}{{12}}} \right) = - \sin \dfrac{{3\pi }}{{12}},\\\cos \dfrac{{7\pi }}{{12}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{{12}}} \right) = - \sin \dfrac{\pi }{{12}}\end{array}\)
    nên ta có:
    \({\cos ^2}\dfrac{\pi }{{12}} + {\cos ^2}\dfrac{{3\pi }}{{12}} + {\cos ^2}\dfrac{{5\pi }}{{12}} + {\cos ^2}\dfrac{{7\pi }}{{12}} + {\cos ^2}\dfrac{{9\pi }}{{12}} + {\cos ^2}\dfrac{{11\pi }}{{12}} = 3\)

    Câu 6.61 trang 207 SBT Đại số 10 Nâng cao.
    Giả sử phương trình bậc hai \(a{x^2} + bx + c = 0\left( {ac \ne 0} \right)\) có hai nghiệm là \(\tan \alpha \) và \(\tan \beta \). Chứng minh rằng:
    \(a.{\sin ^2}\left( {\alpha + \beta } \right) + b.\sin \left( {\alpha + \beta } \right)\cos \left( {\alpha + \beta } \right) + c.{\cos ^2}\left( {\alpha + \beta } \right) = c\).
    Giải:
    Ta có \(\tan \alpha + \tan \beta = - \dfrac{b}{a},\tan \alpha \tan \beta = \dfrac{c}{a}.\)
    • Nếu \(\cos \left( {\alpha + \beta } \right) \ne 0\) thì vế trái của đẳng thức đã cho là
    \(\begin{array}{l}a{\sin ^2}\left( {\alpha + \beta } \right) + b\sin \left( {\alpha + \beta } \right)\cos \left( {\alpha + \beta } \right) + c{\cos ^2}\left( {\alpha + \beta } \right)\\ = {\cos ^2}\left( {\alpha + \beta } \right)\left[ {a{{\tan }^2}\left( {\alpha + \beta } \right) + b\tan \left( {\alpha + \beta } \right) + c} \right]\\ = \dfrac{1}{{1 + {{\tan }^2}\left( {\alpha + \beta } \right)}}\left[ {a{{\tan }^2}\left( {\alpha + \beta } \right) + b\tan \left( {\alpha + \beta } \right) + c} \right]\,\,\,\,\,\,\,\,\left( * \right)\end{array}\)
    Nhưng ta có \(\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }} = \dfrac{b}{{c - a}}\)
    (để ý rằng \(\cos \left( {\alpha + \beta } \right) \ne 0 \Leftrightarrow c \ne a\)) nên thay giá trị của \(\tan \left( {\alpha + \beta } \right)\) vào biểu thức (*), sau khi đơn giản ta được biểu thức đó bằng c.
    • Nếu \(\cos \left( {\alpha + \beta } \right) = 0\left( { \Leftrightarrow \tan \alpha \tan \beta = 1 \Leftrightarrow a = c} \right)\) thì \({\sin ^2}\left( {\alpha + \beta } \right) = 1\), nên vế trái của đẳng thức đã cho bằng \(a{\sin ^2}\left( {\alpha + \beta } \right) = a = c.\)

    Câu 6.62 trang 207 SBT Đại số 10 Nâng cao.
    Chứng minh rằng với mọi \(\alpha \) mà \(\sin 2\alpha \ne 0\), ta có
    \(\sin \left( {\cot \alpha } \right) + \sin \left( {\tan \alpha } \right) = 2\sin \left( {\dfrac{1}{{\sin 2\alpha }}} \right)\cos \left( {\cot 2\alpha } \right)\)
    Giải:
    Đặt \(u = \dfrac{1}{2}\left( {\tan \alpha + \cot \alpha } \right),\) \(v = \dfrac{1}{2}\left( {\tan \alpha - \cot \alpha } \right)\) thì \(u + v = \tan \alpha ,u - v = \cot \alpha \). Khi đó ta có
    \(\begin{array}{l}\sin \left( {\tan \alpha } \right) + \sin \left( {\cot \alpha } \right)\\ = \sin \left( {u + v} \right) + \sin \left( {u - v} \right)\\ = 2\sin u\cos v\\ = 2\sin \left[ {\dfrac{1}{2}\left( {\dfrac{{\sin \alpha }}{{\cos \alpha }} + \dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right].\cos \left[ {\dfrac{1}{2}\left( {\dfrac{{\sin \alpha }}{{\cos \alpha }} - \dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right]\\ = 2\sin \left( {\dfrac{1}{{2\sin \alpha \cos \alpha }}} \right).\cos \left( {\dfrac{{{{\sin }^2}\alpha - {{\cos }^2}\alpha }}{{2\sin \alpha \cos \alpha }}} \right)\\ = 2\sin \left( {\dfrac{1}{{\sin 2\alpha }}} \right).\cos \left( {\cot 2\alpha } \right).\end{array}\)

    Câu 6.63 trang 207 SBT Đại số 10 Nâng cao.
    Chứng minh công thức
    \(\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \)
    (với \(0 < \beta < \dfrac{\pi }{2}\)) bằng “phương pháp hình học” như sau:
    Xét tam giác vuông ABC với \(\widehat A = \dfrac{\pi }{2};\widehat {ABC} = \alpha ;\) E là một điểm trên AC sao cho \(\widehat {ABE} = \beta \). Kẻ AH, EK vuông góc với BC (h.6.8) thì dễ thấy \(\cos \left( {\alpha - \beta } \right) = \dfrac{{BK}}{{BE}} = \dfrac{{BH}}{{BE}} + \dfrac{{HK}}{{BE}}\). Từ đó suy ra công thức trên.
    01.jpg
    Giải:
    Ta có:
    \(\cos \left( {\alpha - \beta } \right) = \dfrac{{BK}}{{BE}} = \dfrac{{BH}}{{BE}} + \dfrac{{HK}}{{BE}}\)
    \(= \dfrac{{BH}}{{BA}}.\dfrac{{BA}}{{BE}} + \dfrac{{EJ}}{{BE}}\) (HKEJ là hình chữ nhật)
    \(\dfrac{{BH}}{{BA}}.\dfrac{{BA}}{{BE}} + \dfrac{{EJ}}{{EA}}.\dfrac{{EA}}{{BE}} = \cos \alpha \cos \beta + \sin \alpha \sin \beta .\)

    Câu 6.64 trang 207 SBT Đại số 10 Nâng cao.
    Chứng minh rằng
    \(\cos \dfrac{\pi }{{32}} = \dfrac{1}{2}\sqrt {2 + \sqrt {2 + \sqrt {2 + \sqrt 2 } } } .\)
    Giải:
    Ta có \(\cos \dfrac{\pi }{4} = \dfrac{1}{2}\sqrt 2 ;\)
    \(\cos \dfrac{\pi }{8} = \sqrt {\dfrac{{1 + \cos \dfrac{\pi }{4}}}{2}}\)
    \( = \sqrt {\dfrac{{2 + \sqrt 2 }}{4}} = \dfrac{1}{2}\sqrt {2 + \sqrt 2 } .\)
    \(\begin{array}{l}\cos \dfrac{\pi }{{16}} = \sqrt {\dfrac{{1 + \cos \dfrac{\pi }{8}}}{2}} \\ = \sqrt {\dfrac{{2 + \sqrt {2 + \sqrt 2 } }}{4}} = \dfrac{1}{2}\sqrt {2 + \sqrt {2 + \sqrt 2 } } ;\end{array}\)
    \(\begin{array}{l}\cos \dfrac{\pi }{{32}} = \sqrt {\dfrac{{1 + \cos \dfrac{\pi }{{16}}}}{2}} \\ = \sqrt {\dfrac{{2 + \sqrt {2 + \sqrt {2 + \sqrt 2 } } }}{4}} \\ = \dfrac{1}{2}\sqrt {2 + \sqrt {2 + \sqrt {2 + \sqrt 2 } } } .\end{array}\)

    Câu 6.65 trang 207 SBT Đại số 10 Nâng cao.
    a) Chứng minh \(\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} = - \dfrac{1}{8}\) bằng cách nhân cả hai vế với \(\sin \dfrac{{2\pi }}{9}.\)
    b) Chứng minh rằng\(\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 2\cos \dfrac{{5\pi }}{9}\cos \dfrac{\pi }{3} = \cos \dfrac{{5\pi }}{9},\)
    Từ đó suy ra \(\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 0\) .
    c) Từ b) suy ra rằng \({\cos ^2}\dfrac{{2\pi }}{9} + {\cos ^2}\dfrac{{4\pi }}{9} + {\cos ^2}\dfrac{{8\pi }}{9} = \dfrac{3}{2}\).
    d) Từ b và c) suy ra rằng:
    \(\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9} + \cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} + \cos \dfrac{{8\pi }}{9}\cos \dfrac{{2\pi }}{9} = - \dfrac{3}{4}\) .
    e) Từ a), b) và d) suy ra rằng
    \(\left( {X - \cos \dfrac{{2\pi }}{9}} \right)\left( {X - \cos \dfrac{{4\pi }}{9}} \right)\left( {X - \cos \dfrac{{8\pi }}{9}} \right) = {X^3} - \dfrac{3}{4}X + \dfrac{1}{8},\)
    từ đó ta có \(\left( {1 - \cos \dfrac{{2\pi }}{9}} \right)\left( {1 - \cos \dfrac{{4\pi }}{9}} \right)\left( {1 - \cos \dfrac{{8\pi }}{9}} \right) = \dfrac{3}{8}.\)
    Suy ra
    • \(\sin \dfrac{\pi }{9}\sin \dfrac{{2\pi }}{9}\sin \dfrac{{4\pi }}{9} = \dfrac{{\sqrt 3 }}{8}.\)
    • \(\sin \dfrac{{5\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9} = \dfrac{{\sqrt 3 }}{8}.\)
    f) Từ e) suy ra rằng
    \(\sin \dfrac{\pi }{9}\sin \dfrac{{2\pi }}{9}\sin \dfrac{{3\pi }}{9}\sin \dfrac{{4\pi }}{9}\sin \dfrac{{5\pi }}{9}\sin \dfrac{{6\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9} = \dfrac{9}{{256}}.\)
    (Chú ý. Người ta chứng minh được rằng không thể dùng thước và compa để dựng đa giác đều chín cạnh nội tiếp trong một đường tròn cho trước.)
    Giải:
    a) Ta có:
    \(\begin{array}{l}\sin \dfrac{{2\pi }}{9}\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = \dfrac{1}{2}\sin \dfrac{{4\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = \dfrac{1}{4}\sin \dfrac{{8\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = \dfrac{1}{8}\sin \dfrac{{16\pi }}{9}\\ = \dfrac{1}{8}\sin \left( {2\pi - \dfrac{{2\pi }}{9}} \right)\\ = - \dfrac{1}{8}\sin \dfrac{{2\pi }}{9}\end{array}\)
    Từ đó: \(\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} = - \dfrac{1}{8}.\)
    b) Ta có
    \(\begin{array}{l}\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 2\cos \dfrac{{5\pi }}{9}\cos \dfrac{\pi }{3}\\ = \cos \dfrac{{5\pi }}{9} = \cos \left( {\pi - \dfrac{{4\pi }}{9}} \right)\\ = - \cos \dfrac{{4\pi }}{9}\end{array}\)
    từ đó \(\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 0.\)
    c) Do
    \(\begin{array}{l}\cos \dfrac{{2\pi }}{9} = 2{\cos ^2}\dfrac{\pi }{9} - 1 = 2{\cos ^2}\dfrac{{8\pi }}{9} - 1,\\cos\dfrac{{4\pi }}{9} = 2{\cos ^2}\dfrac{{2\pi }}{9} - 1\\\cos \dfrac{{8\pi }}{9} = 2{\cos ^2}\dfrac{{4\pi }}{9} - 1,\end{array}\)
    nên từ b) suy ra
    \({\cos ^2}\dfrac{{2\pi }}{9} + {\cos ^2}\dfrac{{4\pi }}{9} + {\cos ^2}\dfrac{{8\pi }}{9} = \dfrac{3}{2}.\)
    d) Với mọi số A, B, C ta có:
    \(AB + BC + CA = \dfrac{1}{2}\left[ {{{\left( {A + B + C} \right)}^2} - {A^2} - {B^2} - {C^2}} \right]\) nên
    \(\begin{array}{l}\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9} + \cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} + \cos \dfrac{{8\pi }}{9}\cos \dfrac{{2\pi }}{9}\\ = \dfrac{1}{2}\left[ {{{\left( {\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9}} \right)}^2} - \left( {{{\cos }^2}\dfrac{{2\pi }}{9} + {{\cos }^2}\dfrac{{4\pi }}{9} + {{\cos }^2}\dfrac{{8\pi }}{9}} \right)} \right]\\ = - \dfrac{1}{2}.\dfrac{3}{2} = - \dfrac{3}{4}.\end{array}\)
    e) Ta có
    \(\begin{array}{l}\left( {X - \cos \dfrac{{2\pi }}{9}} \right)\left( {X - \cos \dfrac{{4\pi }}{9}} \right)\left( {X - \cos \dfrac{{8\pi }}{9}} \right)\\ = {X^3} - \left( {\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9}} \right){X^2}\\ + \left( {\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9} + \cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} + \cos \dfrac{{8\pi }}{9}\cos \dfrac{{2\pi }}{9}} \right)X\\ - \cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = {X^3} - \dfrac{3}{4}X + \dfrac{1}{8}.\end{array}\)
    Từ đó \(\left( {1 - \cos \dfrac{{2\pi }}{9}} \right)\left( {1 - \cos \dfrac{{4\pi }}{9}} \right)\left( {1 - \cos \dfrac{{8\pi }}{9}} \right) = \dfrac{3}{8}\), tức là
    \(2{\sin ^2}\dfrac{\pi }{9}.2{\sin ^2}\dfrac{{2\pi }}{9}.2{\sin ^2}\dfrac{{4\pi }}{9} = \dfrac{3}{8}\),
    suy ra
    \(\sin \dfrac{\pi }{9}.\sin \dfrac{{2\pi }}{9}.\sin \dfrac{{4\pi }}{9} = \dfrac{{\sqrt 3 }}{8}\)
    Đẳng thức này lại cho ta \(\sin \dfrac{{5\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9} = \dfrac{{\sqrt 3 }}{8}.\)
    f) Từ e) ta suy ra:
    \(\begin{array}{l}\sin \dfrac{\pi }{9}\sin \dfrac{{2\pi }}{9}\sin \dfrac{{3\pi }}{9}\sin \dfrac{{4\pi }}{9}\sin \dfrac{{5\pi }}{9}\sin \dfrac{{6\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9}\\ = \dfrac{{\sqrt 3 }}{8}.\dfrac{{\sqrt 3 }}{8}\sin \dfrac{\pi }{3}\sin \dfrac{{2\pi }}{3} = \dfrac{9}{{256}}.\end{array}\)

    Câu 6.66 trang 208 SBT Đại số 10 Nâng cao.
    Chứng minh rằng
    \(\begin{array}{l}{\cos ^2}\left( {\gamma - \alpha } \right) + {\sin ^2}\left( {\gamma - \beta } \right) - 2\cos \left( {\gamma - \alpha } \right)\sin \left( {\gamma - \beta } \right)\\ = {\cos ^2}\left( {\alpha - \beta } \right)\end{array}\)
    Giải:
    Ta có
    \(\begin{array}{l}{\cos ^2}\left( {\gamma - \alpha } \right) + {\sin ^2}\left( {\gamma - \beta } \right)\\ = \dfrac{{1 + \cos 2\left( {\gamma - \alpha } \right)}}{2} + \dfrac{{1 - \cos 2\left( {\gamma - \beta } \right)}}{2}\\ = 1 + \dfrac{1}{2}\left[ {\cos 2\left( {\gamma - \alpha } \right) - \cos 2\left( {\gamma - \beta } \right)} \right]\\ = 1 + \sin \left( {2\gamma - \alpha - \beta } \right)\sin \left( {\alpha - \beta } \right)\end{array}\)
    Từ đó
    \(\begin{array}{l}{\cos ^2}\left( {\gamma - \alpha } \right) + {\sin ^2}\left( {\gamma - \beta } \right) - 2\cos \left( {\gamma - \alpha } \right)\sin \left( {\gamma - \beta } \right)\sin \left( {\alpha - \beta } \right)\\ = 1 + \sin \left( {2\gamma - \alpha - \beta } \right)\sin \left( {\alpha - \beta } \right) - 2\cos \left( {\gamma - \alpha } \right)\sin \left( {\gamma - \beta } \right)\sin \left( {\alpha - \beta } \right)\\ = 1 + \sin \left( {\alpha - \beta } \right)\left[ {\sin \left( {2\gamma - \alpha - \beta } \right) - 2\cos \left( {\gamma - \alpha } \right)\sin \left( {\gamma - \beta } \right)} \right]\\ = 1 + \sin \left( {\alpha - \beta } \right)\left[ {\sin \left( {2\gamma - \alpha - \beta } \right) - \sin \left( {2\gamma - \alpha - \beta } \right) - \sin \left( {\alpha - \beta } \right)} \right]\\ = 1 - {\sin ^2}\left( {\alpha - \beta } \right) = {\cos ^2}\left( {\alpha - \beta } \right)\end{array}\)

    Câu 6.67 trang 208 SBT Đại số 10 Nâng cao.
    Tìm giá trị bé nhất của biểu thức \({\sin ^4}\alpha + {\cos ^4}\alpha \)
    Giải:
    \(\begin{array}{l}{\sin ^4}\alpha + {\cos ^4}\alpha \\ = {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2} - 2{\sin ^2}\alpha {\cos ^2}\alpha \\ = 1 - \dfrac{1}{2}{\sin ^2}2\alpha .\end{array}\)
    Vậy biểu thức đã cho lấy giá trị bé nhất là \(\dfrac{1}{2}\) khi \({\sin ^2}2\alpha = 1\) .

    Câu 6.68 trang 208 SBT Đại số 10 Nâng cao.
    Tìm giá trị bé nhất của biểu thức \({\sin ^6}\alpha + {\cos ^6}\alpha .\)
    Giải:
    \(\begin{array}{l}{\sin ^6}\alpha + {\cos ^6}\alpha \\ = {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^3} - 3{\sin ^2}\alpha {\cos ^2}\alpha \left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)\\ = 1 - 3{\sin ^2}\alpha {\cos ^2}\alpha \\ = 1 - \dfrac{3}{4}{\sin ^2}2\alpha \end{array}\)
    Vậy biểu thức đã cho lấy giá trị nhỏ nhất là \(\dfrac{1}{4}\) khi \({\sin ^2}2\alpha = 1\).

    Câu 6.69.
    \(\sin \dfrac{{3\pi }}{{10}}\) bằng:

    A. \(\cos \dfrac{{4\pi }}{5};\)
    B. \(\cos \dfrac{\pi }{5};\)
    C. \(1 - \cos \dfrac{\pi }{5};\)
    D. \( - \cos \dfrac{\pi }{5}\).
    Giải:
    Chọn B

    Câu 6.70.
    \(\sin \dfrac{\pi }{5}\cos \dfrac{\pi }{{30}} + \sin \dfrac{\pi }{{30}}\cos \dfrac{{4\pi }}{5}\) bằng

    A. 1;
    B. \( - \dfrac{1}{2};\)
    C. \(\dfrac{1}{2}\)
    D. 0
    Giải:
    Chọn C. (Để ý rằng \(\cos \dfrac{{4\pi }}{5} = - \cos \dfrac{\pi }{5}\))

    Câu 6.71.

    \(\dfrac{{\sin \dfrac{\pi }{9} + \sin \dfrac{{5\pi }}{9}}}{{\cos \dfrac{\pi }{9} + \cos \dfrac{{5\pi }}{9}}}\) bằng
    A. \(\dfrac{1}{{\sqrt 3 }};\)
    B. \( - \dfrac{1}{{\sqrt 3 }};\)
    C. \(\sqrt 3 ;\)
    D. \( - \sqrt 3 .\)
    Giải:
    Chọn C.

    Câu 6.72.

    \(\dfrac{{\sin \dfrac{{5\pi }}{9} - \sin \dfrac{\pi }{9}}}{{\cos \dfrac{{5\pi }}{9} - \cos \dfrac{\pi }{9}}}\) bằng
    A. \(\dfrac{1}{{\sqrt 3 }};\)
    B. \( - \dfrac{1}{{\sqrt 3 }};\)
    C. \(\sqrt 3 ;\)
    D. \( - \sqrt 3 .\)
    Giải:
    Chọn B.

    Câu 6.73.
    Giá trị lớn nhất của biểu thức
    \({\sin ^4}\alpha + {\cos ^4}\alpha \)
    A. 1;
    B. \(\dfrac{1}{4};\)
    C. \(\dfrac{1}{2};\)
    D. Không phải ba giá trị trên
    Giải:
    Chọn A. (Để ý rằng \({\sin ^4}\alpha \le {\sin ^2}\alpha ,co{s^4}\alpha \le {\cos ^2}\alpha \))

    Câu 6.74.
    Giá trị lớn nhất của biểu thức \({\sin ^4}\alpha + {\cos ^7}\alpha \) là:

    A. 2;
    B. 1;
    C. \(\dfrac{1}{2};\)
    D. Không phải ba giá trị trên
    Giải:
    Chọn B. (Để ý rằng \({\sin ^4}\alpha \le {\sin ^2}\alpha ,co{s^7}\alpha \le {\cos ^2}\alpha \))

    Câu 6.75.
    Giá trị bé nhất của biểu thức \({\sin ^4}\alpha + {\cos ^7}\alpha \) là:

    A. -2;
    B. -1;
    C. \( - \dfrac{1}{2};\)
    D. 1
    Giải:
    Chọn B. (Để ý rằng \( - {\sin ^2}\alpha \le {\sin ^4}\alpha , - {\cos ^2}\alpha \le {\cos ^7}\alpha \))

    Câu 6.76.
    Giá trị lớn nhất của biểu thức \({\sin ^{12}}\alpha + {\cos ^{12}}\alpha \) là:

    A. 2;
    B. \(\dfrac{1}{4}\);
    C. 1;
    D. \(\dfrac{1}{2}\) .
    Giải:
    Chọn C. (Để ý rằng \({\sin ^{12}}\alpha \le {\sin ^2}\alpha ,{\cos ^{12}}\alpha \le {\cos ^2}\alpha \))

    Câu 6.77.
    Giá trị nhỏ nhất của biểu thức \(\dfrac{4}{{{{\cos }^6}\alpha }} - 3{\tan ^6}\alpha \) là:

    A. 4;
    B. -3;
    C. 1;
    D. 2.
    Giải:
    Chọn A.
    (Để ý rằng \(\dfrac{4}{{{{\cos }^6}}} - 3{\tan ^6}\alpha = 4{\left( {1 + {{\tan }^2}\alpha } \right)^3} - 3{\tan ^6}\alpha \) chỉ chứa những lũy thừa bậc chẵn của \(\tan \alpha \) với hệ số không âm nên nó đạt giá trị nhỏ nhất khi \(\tan \alpha = 0,\left| {\cos \alpha } \right| = 1\))

    Câu 6.78.
    Với mọi \(\alpha \), biểu thức

    \(\cos \alpha + \cos \left( {\alpha + \dfrac{\pi }{5}} \right) + \cos \left( {\alpha + \dfrac{{2\pi }}{5}} \right) +\)
    \( \ldots + \cos \left( {\alpha + \dfrac{{9\pi }}{5}} \right)\) nhận giá trị bằng
    A. 10;
    B. -10;
    C. 0;
    D. Không phải ba giá trị trên
    Giải:
    Chọn C.
    (Để ý rằng các điểm của đường tròn lượng giác xác định bởi các số \(\alpha ,\alpha + \dfrac{\pi }{5},\alpha + \dfrac{{2\pi }}{5}, \ldots ,\alpha + \dfrac{{9\pi }}{5}\) là các đỉnh của một thập giác đều nội tiếp đường tròn đó hoặc để ý rằng:
    \(\cos \alpha = - \cos \left( {\alpha + \dfrac{{5\pi }}{5}} \right),\) \(\cos \left( {\alpha + \dfrac{\pi }{5}} \right) = - \cos \left( {\alpha + \dfrac{{6\pi }}{5}} \right), \ldots \)).