Sách bài tập Toán 11 - Hình học 11 cơ bản - Chương III - Bài 1. Vectơ trong không gian

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Bài 3.1 trang 131 Sách bài tập (SBT) Hình học 11.
    Cho hình lập phương ABCDA’B’C’D’ cạnh a. Gọi O và O’ theo thứ tự là tâm của hai hình vuông ABCD và A’B’C’D’.
    a) Hãy biểu diễn các vectơ \(\overrightarrow {AO} ,\overrightarrow {AO'} \) theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho.
    b) Chứng minh rằng \(\overrightarrow {A{\rm{D}}} + \overrightarrow {D'C'} + \overrightarrow {D'A'} = \overrightarrow {AB} \).
    Giải:
    01.jpg
    a) *\(\overrightarrow {AO} = {1 \over 2}\overrightarrow {AC} = {1 \over 2}\overrightarrow {A'C'} = {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} } \right)\)
    \(\overrightarrow {AO} = \overrightarrow {AB} + \overrightarrow {BO} = \overrightarrow {AB} + {1 \over 2}\overrightarrow {B{\rm{D}}} ,v.v....\)
    *\(\overrightarrow {AO} = {1 \over 2}\overrightarrow {AC} + \overrightarrow {AA'} \)
    \(\eqalign{
    & = {1 \over 2}\left( {\overrightarrow {AA'} + \overrightarrow {AC'} } \right) = {1 \over 2}\left( {\overrightarrow {AB'} + \overrightarrow {AD'} } \right) \cr
    & = \overrightarrow {AA'} + \overrightarrow {A'B'} + {1 \over 2}\overrightarrow {B'D'} \cr
    & = \overrightarrow {AB} + \overrightarrow {BB'} + {1 \over 2}\overrightarrow {B'D'} ,v.v... \cr} \)
    b) \(\overrightarrow {AD} + \overrightarrow {D'C'} + \overrightarrow {D'A'} = \overrightarrow {AD} + \overrightarrow {DC} + \overrightarrow {CB} \)
    (vì \(\overrightarrow {D'C'} = \overrightarrow {DC} \) và \(\overrightarrow {D'A'} = \overrightarrow {CB} \)) nên \(\overrightarrow {A{\rm{D}}} + \overrightarrow {D'C'} + \overrightarrow {D'A'} = \overrightarrow {AB} \).

    Bài 3.2 trang 131 Sách bài tập (SBT) Hình học 11.
    Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là:
    \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {O{\rm{D}}} \)
    Giải:
    02.jpg
    Giả sử bốn điểm A, B, C, D tạo thành một hình bình hành ta có:
    \(\overrightarrow {BC} = \overrightarrow {A{\rm{D}}} \Leftrightarrow \overrightarrow {OC} - \overrightarrow {OB} = \overrightarrow {O{\rm{D}}} - \overrightarrow {OA} \) (với điểm O bất kì )
    \( \Leftrightarrow \overrightarrow {OC} + \overrightarrow {OA} = \overrightarrow {O{\rm{D}}} + \overrightarrow {OB} \)
    Ngược lại, giả sử ta có hệ thức:
    \(\overrightarrow {OC} + \overrightarrow {OA} = \overrightarrow {O{\rm{D}}} + \overrightarrow {OB} \)
    \( \Leftrightarrow \overrightarrow {OC} - \overrightarrow {OB} = \overrightarrow {O{\rm{D}}} - \overrightarrow {OA} \)
    \( \Leftrightarrow \overrightarrow {BC} = \overrightarrow {A{\rm{D}}} \)
    Vì A, B, C, D không thẳng hàng nên tứ giác ABCD là hình bình hành.

    Bài 3.3 trang 131 Sách bài tập (SBT) Hình học 11.
    Cho tứ diện ABCD. Gọi P và Q lần lượt là trung điểm của các cạnh AB và CD. Trên các cạnh AC và BD lần lượt ta lấy các điểm M, N sao cho
    \({{AM} \over {AC}} = {{BN} \over {B{\rm{D}}}} = k\left( {k > 0} \right)\)
    Chứng minh rằng ba vectơ \(\overrightarrow {PQ} ,\overrightarrow {PM} ,\overrightarrow {PN} \) đồng phẳng.
    Giải:
    03.jpg
    Ta có:
    \(\eqalign{
    & \overrightarrow {PQ} = {1 \over 2}\left( {\overrightarrow {PC} + \overrightarrow {P{\rm{D}}} } \right) \cr
    & = {1 \over 2}\left[ {\left( {\overrightarrow {AC} - \overrightarrow {AP} } \right) + \left( {\overrightarrow {B{\rm{D}}} - \overrightarrow {BP} } \right)} \right] \cr
    & = {1 \over 2}\left[ {\left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) - \underbrace {\left( {\overrightarrow {AP} + \overrightarrow {BP} } \right)}_{\overrightarrow 0 }} \right] \cr
    & = {1 \over 2}.{1 \over k}\left( {\overrightarrow {AM} + \overrightarrow {BN} } \right) \cr} \)
    Vì \(\overrightarrow {AC} = {1 \over k}.\overrightarrow {AM} \) và \(\overrightarrow {B{\rm{D}}} = {1 \over k}.\overrightarrow {BN} \)
    Đồng thời \(\overrightarrow {AM} = \overrightarrow {AP} + \overrightarrow {PM} \) và \(\overrightarrow {BN} = \overrightarrow {BP} + \overrightarrow {PN} \), nên \(\overrightarrow {PQ} = {1 \over {2k}}\left( {\overrightarrow {PM} + \overrightarrow {PN} } \right)\) vì \(\overrightarrow {AP} + \overrightarrow {BP} = \overrightarrow 0 \)
    Vậy \(\overrightarrow {PQ} = {1 \over {2k}}\overrightarrow {PM} + {1 \over {2k}}\overrightarrow {PN} \)
    Do đó ba vectơ \(\overrightarrow {PQ} ,\overrightarrow {PM} ,\overrightarrow {PN} \) đồng phẳng.

    Bài 3.4 trang 132 Sách bài tập (SBT) Hình học 11.
    Cho hình lăng trụ tam giác ABC.A’B’C’ có độ dài cạnh bên bằng a. Trên các cạnh bên AA’,BB’,CC’ ta lấy tương ứng các điểm M, N, P sao cho \(AM + BN + CP = a\)
    Chứng minh rằng mặt phẳng (MNP) luôn luôn đi qua một điểm cố định.
    Giải:
    04.jpg
    Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và tam giác MNP . Ta có:
    \(\eqalign{
    & \,\,\,\,\overrightarrow {GG'} = \overrightarrow {GA} + \overrightarrow {AM} + \overrightarrow {MG'} \cr
    & + \,\,\overrightarrow {GG'} = \overrightarrow {GB} + \overrightarrow {BN} + \overrightarrow {NG'} \cr
    & \,\,\,\,\,\overrightarrow {GG'} = \overrightarrow {GC} + \overrightarrow {CP} + \overrightarrow {PG'} \cr} \)
    Cộng từng vế với vế ta có:
    \(3\overrightarrow {GG'} = \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) + \left( {\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} } \right) + \left( {\overrightarrow {MG'} + \overrightarrow {NG'} + \overrightarrow {PG'} } \right)\)
    Vì G là trọng tâm của tam giác ABC nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) và G’ là trọng tâm của tam giác MNP nên \(\overrightarrow {MG'} + \overrightarrow {NG'} + \overrightarrow {PG'} = \overrightarrow 0 \).
    Do đó: \(3\overrightarrow {GG'} = \overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} \)
    Hay \(\overrightarrow {GG'} = {1 \over 3}\left( {\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} } \right) = {1 \over 3}\overrightarrow {AA'} \)
    Vì điểm G cố định và \({1 \over 3}\overrightarrow {AA'} \) là vectơ không đổi nên G’ là điểm cố định. Vậy mặt phẳng (MNP) luôn luôn đi qua điểm G’ cố định.

    Bài 3.5 trang 132 Sách bài tập (SBT) Hình học 11.
    Trong không gian cho hai hình bình hành ABCD và A’B’C’D’ chỉ có chung nhau một điểm A. Chứng minh rằng các vectơ \(\overrightarrow {BB'} ,\overrightarrow {CC'} ,\overrightarrow {DD'} \) đồng phẳng.
    Giải:
    05.jpg
    Ta có :
    \(\overrightarrow {BB'} = \overrightarrow {BA} + \overrightarrow {AB'} ,\overrightarrow {DD'} = \overrightarrow {DA} + \overrightarrow {AD'} \)
    Do đó \(\overrightarrow {BB'} + \overrightarrow {DD'} = \left( {\overrightarrow {BA} + \overrightarrow {DA} } \right) + \left( {\overrightarrow {AB'} + \overrightarrow {AD'} } \right)\)
    Vì \(\overrightarrow {BA} = \overrightarrow {C{\rm{D}}} \) và \(\overrightarrow {AB'} + \overrightarrow {AD'} = \overrightarrow {AC'} \)
    Nên \(\overrightarrow {BB'} + \overrightarrow {DD'} = \left( {\overrightarrow {C{\rm{D}}} + \overrightarrow {DA} } \right) + \overrightarrow {AC'} \)
    Vậy \(\overrightarrow {BB'} + \overrightarrow {DD'} = \overrightarrow {CA} + \overrightarrow {AC'} = \overrightarrow {CC'} \)
    Hệ thức \(\overrightarrow {BB'} + \overrightarrow {DD'} = \overrightarrow {CC'} \) biểu thị sự đồng phẳng của ba vectơ \(\overrightarrow {BB'} ,\overrightarrow {CC'} ,\overrightarrow {DD'} \).

    Bài 3.6 trang 132 Sách bài tập (SBT) Hình học 11.
    Trên mặt phẳng \(\left( \alpha \right)\) cho hình bình hành \({A_1}{B_1}{C_1}{D_1}\). Về một phía đối với mặt phẳng \(\left( \alpha \right)\) ta dựng hình bình hành \({A_2}{B_2}{C_2}{D_2}\). Trên các đoạn \({A_1}{A_2},{B_1}{B_2},{C_1}{C_2},{D_1}{D_2}\) ta lần lượt lấy các điểm A, B, C, D sao cho
    \({{A{A_1}} \over {A{A_2}}} = {{B{B_1}} \over {B{B_2}}} = {{C{C_1}} \over {C{C_2}}} = {{D{D_1}} \over {D{D_2}}} = 3\)
    Chứng minh rằng tứ giác ABCD là hình bình hành
    Giải:
    06.jpg
    Lấy điểm O cố định rồi đặt \(\overrightarrow {O{A_1}} = \overrightarrow {{a_1}} ,\,\,\overrightarrow {O{B_1}} = \overrightarrow {{b_1}} ,\,\,\overrightarrow {O{C_1}} = \overrightarrow {{c_1}} ,\,\,\overrightarrow {O{D_1}} = \overrightarrow {{d_1}} \). Điều kiện cần và đủ để tứ giác \({A_1}{B_1}{C_1}{D_1}\) là hình bình hành là \(\overrightarrow {{a_1}} + \overrightarrow {{c_1}} = \overrightarrow {{b_1}} + \overrightarrow {{d_1}} \) ( theo bài tập 3.2) (1)
    Đặt \(\overrightarrow {O{A_2}} = \overrightarrow {{a_2}} ,\overrightarrow {O{B_2}} = \overrightarrow {{b_2}} ,\overrightarrow {O{C_2}} = \overrightarrow {{c_2}} ,\overrightarrow {O{D_2}} = \overrightarrow {{d_2}} \). Điều kiện cần và đủ để tứ giác \({A_2}{B_2}{C_2}{D_2}\) là hình bình hành là \(\overrightarrow {{a_2}} + \overrightarrow {{c_2}} = \overrightarrow {{b_2}} + \overrightarrow {{d_2}} \) (2)
    Đặt \(\overrightarrow {OA} = \overrightarrow a ,\,\,\overrightarrow {OB} = \overrightarrow b ,\,\,\overrightarrow {OC} = \overrightarrow c ,\,\,\overrightarrow {OD} = \overrightarrow d \).
    Ta có \({{A{A_1}} \over {A{A_2}}} = 3 \Rightarrow \overrightarrow {A{A_1}} = - 3\overrightarrow {A{A_2}} \)
    \(\eqalign{
    & \Leftrightarrow \overrightarrow {O{A_1}} - \overrightarrow {OA} = 3\left( {\overrightarrow {O{A_2}} - \overrightarrow {OA} } \right) \cr
    & \Leftrightarrow \overrightarrow {{a_1}} - \overrightarrow a = - 3\left( {\overrightarrow {{a_2}} - \overrightarrow a } \right) \cr
    & \Leftrightarrow \overrightarrow a = {1 \over 4}\left( {\overrightarrow {{a_1}} + 3\overrightarrow {{a_2}} } \right) \cr} \)
    Tương tự: \(\overrightarrow b = {1 \over 4}\left( {\overrightarrow {{b_1}} + 3\overrightarrow {{b_2}} } \right)\),
    \(\overrightarrow c = {1 \over 4}\left( {\overrightarrow {{c_1}} + 3\overrightarrow {{c_2}} } \right),\overrightarrow {\,\,d} = {1 \over 4}\left( {\overrightarrow {{d_1}} + 3\overrightarrow {{d_2}} } \right)\).
    Ta có: \(\overrightarrow a + \overrightarrow c = {1 \over 4}\left( {\overrightarrow {{a_1}} + 3\overrightarrow {{a_2}} } \right) + {1 \over 4}\left( {\overrightarrow {{c_1}} + 3\overrightarrow {{c_2}} } \right)\)
    \(= {1 \over 4}\left( {\overrightarrow {{a_1}} + \overrightarrow {{c_1}} } \right) + {3 \over 4}\left( {\overrightarrow {{a_2}} + \overrightarrow {{c_2}} } \right)\)
    Và:
    \(\eqalign{
    & \overrightarrow b + \overrightarrow d = {1 \over 4}\left( {\overrightarrow {{b_1}} + 3\overrightarrow {{b_2}} } \right) + {1 \over 4}\left( {\overrightarrow {{d_1}} + 3\overrightarrow {{d_2}} } \right) \cr
    & = {1 \over 4}\left( {\overrightarrow {{b_1}} + \overrightarrow {{d_1}} } \right) + {3 \over 4}\left( {\overrightarrow {{b_2}} + \overrightarrow {{d_2}} } \right) \cr}\)
    Từ (1) và (2) ta có \(\overrightarrow {{a_1}} + \overrightarrow {{c_1}} = \overrightarrow {{b_1}} + \overrightarrow {{d_1}} \) và \(\overrightarrow {{a_2}} + \overrightarrow {{c_2}} = \overrightarrow {{b_2}} + \overrightarrow {{d_2}} \) nên suy ra :
    \(\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d \Leftrightarrow \overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {O{\rm{D}}} \)
    ⟺ tứ giác ABCD là hình bình hành.

    Bài 3.7 trang 132 Sách bài tập (SBT) Hình học 11.
    Cho hình hộp ABCD.A’B’C’D’ có P và R lần lượt là trung điểm các cạnh AB và A’D’. Gọi P’, Q, Q’ lần lượt là tâm đối xứng của các hình bình hành ABCD, CDD’C’, A’B’C’D’, ADD’A’
    a) Chứng minh rằng \(\overrightarrow {PP'} + \overrightarrow {QQ'} + \overrightarrow {R{\rm{R}}'} = \overrightarrow 0 \)
    b) Chứng minh hai tam giác PQRvà P’Q’R’ có trọng tâm trùng nhau.
    Giải:
    07.jpg
    a) Ta có :\(\overrightarrow {PP'} = {1 \over 2}\overrightarrow {A{\rm{D}}} ,\,\,\,\overrightarrow {QQ'} = {1 \over 2}\overrightarrow {DA'} ,\,\,\,\overrightarrow {R{\rm{R}}'} = {1 \over 2}\overrightarrow {A'A} \),
    Vậy: \(\overrightarrow {PP'} + \overrightarrow {QQ'} + \overrightarrow {R{\rm{R}}'} = {1 \over 2}\left( {\overrightarrow {A{\rm{D}}} + \overrightarrow {DA} + \overrightarrow {A'A} } \right) = \overrightarrow 0 \)
    b) Gọi G và G’ lần lượt là trọng tâm các tam giác PQR và P’Q’R’.
    Theo câu a) ta có: \(\overrightarrow {PP'} + \overrightarrow {QQ'} + \overrightarrow {R{\rm{R}}'} = \overrightarrow 0 \)
    Do đó:
    \(\left( {\overrightarrow {PG} + \overrightarrow {GG'} + \overrightarrow {G'P'} } \right) + \left( {\overrightarrow {QG} + \overrightarrow {GG'} + \overrightarrow {G'Q'} } \right) + \left( {\overrightarrow {RG} + \overrightarrow {GG'} + \overrightarrow {G'R'} } \right) = \overrightarrow 0 \)
    \( \Leftrightarrow \underbrace {\left( {\overrightarrow {PG} + \overrightarrow {QG} + \overrightarrow {RG} } \right)}_{\overrightarrow 0 } + 3\overrightarrow {GG'} + \underbrace {\left( {\overrightarrow {G'P'} + \overrightarrow {G'Q'} + \overrightarrow {G'R'} } \right)}_{\overrightarrow 0 } = \overrightarrow 0 \)
    \(3\overrightarrow {GG'} = \overrightarrow 0 \) ⟹ G trùng với G’
    Vậy hai tam giác PQR và P’Q’R’ có cùng trọng tâm.