Sách bài tập Toán 11 - Hình học 11 nâng cao - Chương III - Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    Câu 1 trang 113 Sách bài tập Hình học 11 Nâng cao.
    Cho tứ diện ABCD, M và N là các điểm lần lượt thuộc AB và CD sao cho \(\overrightarrow {MA} = - 2\overrightarrow {MB} ,\,\overrightarrow {N{\rm{D}}} = - 2\overrightarrow {NC} \). Các điểm I, J, K lần lượt thuộc AD, MN, BC sao cho \(\overrightarrow {IA} = k\overrightarrow {I{\rm{D}}} ,\,\overrightarrow {JM} = k\overrightarrow {JN} ,\,\overrightarrow {KB} = k\overrightarrow {KC} \). Chứng minh rằng các điểm I, J, K thẳng hàng.
    Trả lời:
    01.jpg
    Cách 1.
    Ta có:
    \(\eqalign{ & \overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AM} + \overrightarrow {MJ} \,\,\,\,\,\,\,\,\,\left( 1 \right) \cr & \overrightarrow {IJ} = \overrightarrow {ID} + \overrightarrow {DN} + \overrightarrow {NJ} \,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \cr} \)
    Từ (2) ta có:
    \(\eqalign{ & k\overrightarrow {IJ} = k\overrightarrow {ID} + k\overrightarrow {DN} + k\overrightarrow {NJ} \cr & hay\,\,\,k\overrightarrow {IJ}= \overrightarrow{IA} + k\overrightarrow {DN} + \overrightarrow {MJ} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \cr} \)
    Từ (1), (3) ta có:
    \(\eqalign{ & \left( {1 - k} \right)\overrightarrow {IJ} = \overrightarrow {AM} - k\overrightarrow {DN} \cr & hay\,\,\overrightarrow {IJ} = {1 \over {1 - k}}\overrightarrow {AM} - {k \over {1 - k}}\overrightarrow {DN} \cr} \)
    Chứng minh tương tự như trên, ta có:
    \(\overrightarrow {JK} = {1 \over {1 - k}}\overrightarrow {MB} - {k \over {1 - k}}\overrightarrow {NC} \)
    Mặt khác \(\overrightarrow {MA} = - 2\overrightarrow {MB} ,\,\,\,\overrightarrow {N{\rm{D}}} = - 2\overrightarrow {NC} \)
    nên \(\overrightarrow {IJ} = {2 \over {1 - k}}\overrightarrow {MB} - {{2k} \over {1 - k}}\overrightarrow {NC} \).
    Từ đó, ta có \(\overrightarrow {IJ} = 2\overrightarrow {IK} \)
    Vậy ba điểm I, J, K thẳng hàng.
    Cách 2.
    Vì \(\overrightarrow {MA} = - 2\overrightarrow {MB} \)
    nên với điểm O bất kì thì \(\overrightarrow {OM} = {{\overrightarrow {OA} + 2\overrightarrow {OB} } \over 3}\).
    Tương tự
    \(\eqalign{ & \overrightarrow {ON} = {{\overrightarrow {O{\rm{D}}} + 2\overrightarrow {OC} } \over 3};\,\,\,\overrightarrow {OI} = {{\overrightarrow {OA} - k\overrightarrow {O{\rm{D}}} } \over {1 - k}}; \cr & \overrightarrow {OK} = {{\overrightarrow {OB} - k\overrightarrow {OC} } \over {1 - k}};\,\,\overrightarrow {OJ} = {{\overrightarrow {OM} - k\overrightarrow {ON} } \over {1 - k}}. \cr} \)
    Từ đó, ta có:
    \(\eqalign{ & \overrightarrow {OJ} = {1 \over {1 - k}}.{1 \over 3}\left( {\overrightarrow {OA} + 2\overrightarrow {OB} - k\overrightarrow {OD} - 2k\overrightarrow {OC} } \right) \cr & = {1 \over {1 - k}}.{1 \over 3}\left[ {\left( {1 - k} \right)\overrightarrow {OI} + 2\left( {1 - k} \right)\overrightarrow {OK} } \right] \cr & = {1 \over 3}(\overrightarrow {OI} + 2\overrightarrow {OK} ) = {1 \over 3}\overrightarrow {OI} + {2 \over 3}\overrightarrow {OK} . \cr} \)
    Mặt khác \({1 \over 3} + {2 \over 3} = 1\).
    Vậy 3 điểm I, J, K thẳng hàng.

    Câu 2 trang 114 Sách bài tập Hình học 11 Nâng cao.
    Cho hình hộp ABCD.A’B’C’D’; các điểm M, N lần lượt thuộc các đường thẳng CA và DC’ sao cho \(\overrightarrow {MC} - m\overrightarrow {MA} ,\,\overrightarrow {N{\rm{D}}} = m\overrightarrow {NC'} \). Xác định m để các đường thẳng MN và BD’ song song với nhau. Khi ấy, tính MN biết \(\widehat {ABC} = \widehat {ABB'} = \widehat {CBB'} = {60^0}\) và BA = a, BB’ = b, BC = c.
    Trả lời:
    02.jpg
    Xác định m:
    Đặt \(\overrightarrow {BA} = \overrightarrow a ,\,\overrightarrow {BB} = \overrightarrow b ,\,\overrightarrow {BC} = \overrightarrow c \) thì \(\overrightarrow {B{\rm{D}}'} = \overrightarrow a + \overrightarrow b + \overrightarrow {c.} \)
    Do \(\overrightarrow {MC} = m\overrightarrow {MA} \) nên \(\overrightarrow {BM} = {{\overrightarrow {BC} - m\overrightarrow {BA} } \over {1 - m}} = {{\overrightarrow c - m\overrightarrow a } \over {1 - m}}\)
    Tương tự, ta có:
    \(\eqalign{ & \overrightarrow {BN} = {{\overrightarrow {B{\rm{D}}} - m\overrightarrow {BC'} } \over {1 - m}} = {{\overrightarrow a + \overrightarrow c - m\left( {\overrightarrow b + \overrightarrow c } \right)} \over {1 - m}} \cr & = {1 \over {1 - m}}\overrightarrow a - {m \over {1 - m}}\overrightarrow b + \overrightarrow c . \cr} \)
    Từ đó
    \(\eqalign{ & \overrightarrow {MN} = \overrightarrow {BN} - \overrightarrow {BM} \cr & = {{1 + m} \over {1 - m}}\overrightarrow a - {m \over {1 - m}}\overrightarrow b - {m \over {1 - m}}\overrightarrow c . \cr} \)
    Do AC, BD’ chéo nhau và DC’, BD’ chéo nhau nên
    \(\eqalign{ & MN//B{\rm{D}}' \Leftrightarrow \overrightarrow {MN} = k\overrightarrow {B{\rm{D}}'} \cr & \Leftrightarrow \overrightarrow {MN} = k\overrightarrow a + k\overrightarrow b + k\overrightarrow c \cr} \)
    Mặt khác \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng nên điều ấy xảy ra khi và chỉ khi:
    \(\eqalign{ & \left\{ \matrix{ {{1 + m} \over {1 - m}} = k \hfill \cr - {m \over {1 - m}} = k \hfill \cr - {m \over {1 - m}} = k \hfill \cr} \right. \cr & \Rightarrow 1 + m = - m \Leftrightarrow m = - {1 \over 2} \cr} \)
    Từ đó, ta có \(k = {1 \over 3}\)
    Vậy \(m = - {1 \over 2}\) thì MN // BD’.
    Tính MN:
    Khi ấy \(\overrightarrow {MN} = {1 \over 3}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\)
    do đó
    \({\overrightarrow {MN} ^2} \)
    03.jpg
    hay \(M{N^2} = {1 \over 9}\left( {{a^2} + {b^2} + {c^2} + ab + ac + bc} \right)\)
    tức là \(MN = {1 \over 3}\sqrt {{a^2} + {b^2} + {c^2} + ab + bc + ca} \)

    Câu 3 trang 114 Sách bài tập Hình học 11 Nâng cao.
    Cho hình lăng trụ ABC. A’B’C’. Gọi I và J lần lượt là trung điểm của BB’ và A’C’. Điểm K thuộc B’C’ sao cho \(\overrightarrow {KC'} = - 2\overrightarrow {KB'} \) . Chứng minh rằng bốn điểm A, I, J, K cùng thuộc một mặt phẳng.
    Trả lời
    04.jpg
    Đặt \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AC} = \overrightarrow c .\)
    Ta có:
    \(\eqalign{ & \overrightarrow {AI} = {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {AB'} } \right) \cr & = {1 \over 2}\left( {\overrightarrow b + \overrightarrow a + \overrightarrow b } \right) \cr & = {1 \over 2}\left( {\overrightarrow a + 2\overrightarrow b } \right);\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr & \overrightarrow {AJ} = {1 \over 2}\left( {\overrightarrow {AA'} + \overrightarrow {AC'} } \right) \cr & = {1 \over 2}\left( {\overrightarrow a + \overrightarrow a + \overrightarrow c } \right) \cr & = {1 \over 2}\left( {2\overrightarrow a + \overrightarrow c } \right).\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \cr & \overrightarrow {AK} = {{\overrightarrow {AC'} + 2\overrightarrow {AB'} } \over 3} \cr & = {{\overrightarrow a + \overrightarrow c + 2\left( {\overrightarrow a + \overrightarrow b } \right)} \over 3} \cr & = {{3\overrightarrow a + 2\overrightarrow b + \overrightarrow c } \over 3}.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \cr} \)
    Từ (1), (2), (3) ta có \(\overrightarrow {AK} = {2 \over 3}\left( {\overrightarrow {AI} + \overrightarrow {AJ} } \right)\)
    Vậy \(\overrightarrow {AI} ,\overrightarrow {AJ} ,\overrightarrow {AK} \) đồng phẳng, tức là các điểm A, I, J, K cùng thuộc một mặt phẳng.
    Chú ý: Có thể chứng minh các điểm A, I, J, K thuộc một mặt phẳng bằng cách chứng minh AI và JK cắt nhau tại điểm M.

    Câu 4 trang 114 Sách bài tập Hình học 11 Nâng cao.
    Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P) bất kì không đi qua S, cắt các cạnh bên SA, SB, SC, SD lần lượt tại các điểm \({A_1},{B_1},{C_1},{D_1}\) . Dùng phương pháp vectơ, chứng minh rằng
    \({{SA} \over {S{A_1}}} + {{SC} \over {S{C_1}}} = {{SB} \over {S{B_1}}} + {{S{\rm{D}}} \over {S{{\rm{D}}_1}}}\)
    Trả lời:
    05.jpg
    Vì ABCD là hình bình hành nên
    \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {S{\rm{D}}} \)
    hay \(\overrightarrow {S{\rm{D}}} = \overrightarrow {SA} + \overrightarrow {SC} - \overrightarrow {SB} \)
    Đặt
    \(\eqalign{ & \overrightarrow {SA} = a\overrightarrow {S{A_1}} ,\overrightarrow {SB} = b\overrightarrow {S{B_1}} , \cr & \overrightarrow {SC} = c\overrightarrow {S{C_1}} ,\overrightarrow {S{\rm{D}}} = d\overrightarrow {S{{\rm{D}}_1}} \cr} \)
    (với a, b, c, d là các số lớn hơn 1)
    Khi đó:
    \(\eqalign{ & {{SA} \over {S{A_1}}} + {{SC} \over {S{C_1}}} = a + c \cr & {{SB} \over {S{B_1}}} + {{S{\rm{D}}} \over {S{{\rm{D}}_1}}} = b + d \cr} \)

    \(\eqalign{ & \overrightarrow {S{{\rm{D}}_1}} = {1 \over d}.\overrightarrow {S{\rm{D}}} = {1 \over d}\left( {\overrightarrow {SA} + \overrightarrow {SC} - \overrightarrow {SB} } \right) \cr & = {1 \over d}\left( {a\overrightarrow {S{A_1}} + c\overrightarrow {S{C_1}} - b\overrightarrow {S{B_1}} } \right) \cr & = {a \over d}.\overrightarrow {S{A_1}} + {c \over d}.\overrightarrow {S{C_1}} - {b \over d}.\overrightarrow {S{B_1}} \cr} \)
    Mặt khác các điểm \({A_1},{B_1},{C_1},{D_1}\) thuộc mặt phẳng, nên từ đẳng thức đó suy ra
    \({a \over d} + {c \over d} - {b \over d} = 1\)
    tức là a + c = b + d
    Như vậy \({{SA} \over {S{A_1}}} + {{SC} \over {S{C_1}}} = {{SB} \over {S{B_1}}} + {{S{\rm{D}}} \over {S{{\rm{D}}_1}}}\).

    Câu 5 trang 114 Sách bài tập Hình học 11 Nâng cao.
    Cho hình hộp ABCD.A’B’C’D’ có các cạnh bằng m, các góc tại A bằng 600 \(\left( {\widehat {BA{\rm{D}}} = \widehat {A'AB} = \widehat {A'A{\rm{D}}} = {{60}^0}} \right)\) . Gọi P và Q là các điểm xác định bởi \(\overrightarrow {AP} = \overrightarrow {D'A} ,\overrightarrow {C'Q} = \overrightarrow {DC'} \). Chứng minh rằng đường thẳng PQ đi qua trung điểm của cạnh BB’. Tính độ dài đoạn thẳng PQ.
    Trả lời:
    06.jpg
    Đặt \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AD} = \overrightarrow c \) .
    Ta có: \(\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = {1 \over 2}{m^2}\)
    và \({\overrightarrow a ^2} = {\overrightarrow b ^2} = {\overrightarrow c ^2} = {m^2}\) .
    Gọi M là trung điểm của BB’ thì
    \(\overrightarrow {MP} = \overrightarrow {MB} + \overrightarrow {BA} + \overrightarrow {AP} \).
    Do \(\overrightarrow {AP} = \overrightarrow {D'A} = - \overrightarrow a - \overrightarrow c \).
    nên
    \(\eqalign{ & \overrightarrow {MP} = - {{\overrightarrow a } \over 2} - \overrightarrow b - \overrightarrow a - \overrightarrow c \cr & = - {3 \over 2}\overrightarrow a - \overrightarrow b - \overrightarrow c \cr} \)
    Mặt khác
    \(\eqalign{
    & \overrightarrow {MQ} = \overrightarrow {MB'} + \overrightarrow {B'C'} + \overrightarrow {C'Q} \cr
    & \,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {MB'} + \overrightarrow {B'C'} + \overrightarrow {DC'} \cr
    & \,\,\,\,\,\,\,\,\,\,\,\, = {3 \over 2}\overrightarrow a + \overrightarrow b + \overrightarrow c \cr} \)
    Như vậy \(\overrightarrow {MP} = - \overrightarrow {MQ} \) , tức là ba điểm P, M, Q thẳng hàng hay đường thẳng PQ đi qua trung điểm của cạnh BB’.
    Ta có:
    07.jpg

    Câu 6 trang 114 Sách bài tập Hình học 11 Nâng cao.
    Cho hình hộp ABCD.A’B’C’D’. Gọi \({D_1},{D_2},{D_3}\) lần lượt là điểm đối xứng của điểm D’ qua A, B’, C. Chứng tỏ rằng B là trọng tâm của tứ diện \({D_1}{D_2}{D_3}D'\).
    Trả lời:
    08.jpg
    Cách 1.
    Đặt \(\overrightarrow {AA'} = \overrightarrow a ,\,\,\overrightarrow {AB} = \overrightarrow {b,} \,\,\overrightarrow {AD} = \overrightarrow c \)
    Từ giả thiết, ta có
    \(\overrightarrow {B{\rm{D}}'} + \overrightarrow {B{{\rm{D}}_1}} = 2\overrightarrow {BA} = - 2\overrightarrow b \)
    mà \(\overrightarrow {B{\rm{D}}'} = \overrightarrow a - \overrightarrow b + \overrightarrow c \)
    Vậy \(\overrightarrow {B{{\rm{D}}_1}} = - \overrightarrow a - \overrightarrow b - \overrightarrow {c.} \)
    Lập luận tương tự như trên, ta có \(\overrightarrow {B{{\rm{D}}_2}} = \overrightarrow a + \overrightarrow b - \overrightarrow c \) và \(\overrightarrow {B{{\rm{D}}_3}} = - \overrightarrow a + \overrightarrow b + \overrightarrow c \)
    Vậy \(\overrightarrow {B{{\rm{D}}_1}} + \overrightarrow {B{{\rm{D}}_2}} + \overrightarrow {B{{\rm{D}}_3}} + \overrightarrow {B{\rm{D}}'} = \overrightarrow 0 \)
    Điều này chứng tỏ B là trọng tâm của tứ diện \({D_1}{D_2}{D_3}D'\) .
    Cách 2.
    Gọi I là giao điểm của BD’ và mp(AB’C) thì D’I = 2IB.
    Gọi J là giao điểm của BD’ với mp (D1D2D3), do D1, D2, D3 là các điểm đối xứng của D’ lần lượt qua A, B’, C nên IJ = ID’ hay \(D'B = {3 \over 4}D'J\).
    Mặt khác I là trọng tâm tam giác AB’C nên J là trọng tâm tam giác D1D2D3. Từ đó B là trọng tâm của tứ diện \({D_1}{D_2}{D_3}D'\).

    Câu 7 trang 114 Sách bài tập Hình học 11 Nâng cao.
    Cho hình lập phương ABCD.A’B’C’D’. Gọi M và N lần lượt là các điểm thuộc AD’ và DB sao cho \(\overrightarrow {MA} = k\overrightarrow {M{\rm{D}}'} ,\overrightarrow {N{\rm{D}}} = k\overrightarrow {NB} \left( {k \ne 0,k \ne 1} \right)\).
    a) Chứng minh rằng MN luôn song song với mp (A’BC).
    b) Khi đường thẳng MN song song với đường thẳng A’C, chứng tỏ rằng MN vuông góc với AD’ và DB
    Trả lời:
    09.jpg
    a) Đặt \(\overrightarrow {AA'} = \overrightarrow a ,\,\overrightarrow {AB} = \overrightarrow b ,\,\overrightarrow {AD} = \overrightarrow c \).
    Khi đó, ta có:
    \(\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0\).
    và \({\overrightarrow a ^2} = {\overrightarrow b ^2} = {\overrightarrow c ^2}\).
    Vì \(\overrightarrow {MA} = k\overrightarrow {M{\rm{D}}'} \) nên \(\overrightarrow {MA} = k\left( {\overrightarrow {MA} + \overrightarrow {A{\rm{D}}'} } \right)\).
    Vậy \(\overrightarrow {AM} = {k \over {k - 1}}\left( {\overrightarrow a + \overrightarrow c } \right).\)
    Tương tự như trên, ta có:
    \(\overrightarrow {AN} = {{\overrightarrow {A{\rm{D}}} - k\overrightarrow {AB} } \over {1 - k}} = - {k \over {1 - k}}\overrightarrow b + {1 \over {1 - k}}\overrightarrow c \).
    Từ đó: \(\eqalign{ & \overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} \cr & = {{1 + k} \over {1 - k}}\overrightarrow c + {k \over {1 - k}}\left( {\overrightarrow a - \overrightarrow b } \right) \cr} \)
    hay \(\overrightarrow {MN} = {{1 + k} \over {1 - k}}\overrightarrow {BC} + {k \over {1 - k}}\overrightarrow {BA'} \).
    Như vậy ba vectơ \(\overrightarrow {MN} ,\overrightarrow {BC} ,\overrightarrow {BA'} \) đồng phẳng.
    Mặt khác AD’, DB cắt mp(A’BCD’); các điểm M, N lần lượt thuộc AD’, DB với k ≠ 0, k ≠ 1 nên MN không thuộc mp(A’BC). Vậy MN song song với mp(A’BC).
    b) Ta có \(\overrightarrow {A'C} = - \overrightarrow a + \overrightarrow b + \overrightarrow c \); A’C, AD’ chéo nhau; A’C, BD chéo nhau mà \(M \in A{\rm{D}}',N \in DB\). Do đó, đường thẳng MN song song với đường thẳng A’C khi và chỉ khi \(\overrightarrow {MN} = m\overrightarrow {A'C} \) , tức là
    \({k \over {1 - k}}\overrightarrow a - {k \over {1 - k}}\overrightarrow b + {{1 + k} \over {1 - k}}\overrightarrow c = - m\overrightarrow a + m\overrightarrow b + m\overrightarrow c \)
    Do \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) là ba vectơ không đồng phẳng nên đẳng thức trên xảy ra khi bà chỉ khi
    \(\left\{ \matrix{ {k \over {1 - k}} = - m \hfill \cr - {k \over {1 - k}} = m \hfill \cr {{1 + k} \over {1 - k}} = m \hfill \cr} \right.\)
    Suy ra \( - k = 1 + k \Leftrightarrow k = - {1 \over 2}\)
    Vậy khi \(k = - {1 \over 2}\) thì MN song song với A’C.
    Khi đó \(\overrightarrow {MN} = - {1 \over 3}\left( {\overrightarrow a - \overrightarrow b - \overrightarrow c } \right)\)
    Mặt khác \(\overrightarrow {A{\rm{D}}'} = \overrightarrow a + \overrightarrow c ,\overrightarrow {DB} = \overrightarrow b - \overrightarrow c \)
    Vậy
    \(\eqalign{ & \overrightarrow {MN} .\overrightarrow {A{\rm{D}}'} = - {1 \over 3}\left( {{{\overrightarrow a }^2} - {{\overrightarrow c }^2}} \right) = 0 \cr & \overrightarrow {MN} .\overrightarrow {DB} = - {1 \over 3}\left( { - {{\overrightarrow b }^2} + {{\overrightarrow c }^2}} \right) = 0 \cr} \)
    Điều này khẳng định MN vuông góc với AD’ và DB.

    Câu 8 trang 114 Sách bài tập Hình học 11 Nâng cao.
    Cho hình tứ diện ABCD có tất cả các cạnh bằng m. Các điểm M và N lần lượt là trung điểm của AB và CD.
    a) Tính độ dài MN.
    b) Tính góc giữa đường thẳng MN với các đường thẳng BC, AB và CD.
    Trả lời:
    10.jpg
    Đặt \(\overrightarrow {A{\rm{D}}} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AC} = \overrightarrow c \) .
    Khi đó, ta có:
    \(\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = {1 \over 2}{m^2}\) và \({\overrightarrow a ^2} = {\overrightarrow b ^2} = {\overrightarrow c ^2} = {m^2}\)
    a) Vì M, N là trung điểm của AB và CD nên
    \(\overrightarrow {MN} = {1 \over 2}\left( {\overrightarrow {A{\rm{D}}} + \overrightarrow {BC} } \right)\)
    hay \(\overrightarrow {MN} = {1 \over 2}\left( {\overrightarrow a + \overrightarrow c - b} \right)\)
    Vậy
    11.jpg
    Tức là \(MN = {{m\sqrt 2 } \over 2}\)
    b) Ta có
    \(\eqalign{ & \overrightarrow {MN} .\overrightarrow {AB} = {1 \over 2}\left( {\overrightarrow a + \overrightarrow c - \overrightarrow b } \right).\overrightarrow b \cr & = {1 \over 2}\left( {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c - {{\overrightarrow b }^2}} \right) \cr & = {1 \over 2}\left( {{{{m^2}} \over 2} + {{{m^2}} \over 2} - {m^2}} \right) = 0 \cr} \)
    Vậy góc giữa hai đường thẳng MN và AB bằng 90°
    Ta có:
    12.jpg
    Vậy góc giữa hai đường thẳng MN và CD bằng 90°.
    Ta có :
    13.jpg
    Tức là:
    \(\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {BC} } \right|\cos \left( {\overrightarrow {MN} ,\overrightarrow {BC} } \right) = {1 \over 2}{m^2}\)
    Từ đó \(\cos \left( {\overrightarrow {MN} ,\overrightarrow {BC} } \right) = {{{{{m^2}} \over 2}} \over {m.{{m\sqrt 2 } \over 2}}} = {{\sqrt 2 } \over 2}\)
    Vậy góc giữa hai đường thẳng MN và BC bằng 45°.

    Câu 9 trang 114 Sách bài tập Hình học 11 Nâng cao.
    Cho hình tứ diện ABCD; I và J lần lượt là trung điểm của AB và CD; M là điểm thuộc AC sao cho \(\overrightarrow {MA} = {k_1}\overrightarrow {MC} \) ; N là điểm thuộc BD sao cho \(\overrightarrow {NB} = {k_2}\overrightarrow {N{\rm{D}}} \) . Chứng minh rằng các điểm I, J, M, N cùng thuộc một mặt phẳng khi và chỉ khi k1 = k2.
    Trả lời:
    14.jpg
    Vì \(\overrightarrow {MA} = {k_1}\overrightarrow {MC} \)
    nên \(\overrightarrow {IM} = {{\overrightarrow {IA} - {k_1}\overrightarrow {IC} } \over {1 - {k_1}}}\)
    Tương tự, ta có:
    \(\overrightarrow {IN} = {{\overrightarrow {IB} - {k_2}\overrightarrow {I{\rm{D}}} } \over {1 - {k_2}}} = {{ - \overrightarrow {IA} - {k_2}\overrightarrow {I{\rm{D}}} } \over {1 - {k_2}}}\)
    Mặt khác: \(\overrightarrow {IJ} = {1 \over 2}\left( {\overrightarrow {IC} + \overrightarrow {ID} } \right)\)
    Để các điểm I, I, M, N thuộc một mặt phẳng, điều kiện cần và đủ là ba vectơ \(\overrightarrow {IM} ,\overrightarrow {IN} ,\overrightarrow {IJ} \) đồng phẳng. Rõ ràng là \(\overrightarrow {IN} \) và \(\overrightarrow {IJ} \) không cùng phương nên điều khẳng định \(\overrightarrow {IM} ,\overrightarrow {IN} ,\overrightarrow {IJ} \) đồng phẳng tương đương với
    \(\overrightarrow {IM} = p\overrightarrow {IN} + q\overrightarrow {IJ} \)
    hay
    \(\eqalign{ & {{\overrightarrow {IA} - {k_1}\overrightarrow {IC} } \over {1 - {k_1}}} = p.{{ - \overrightarrow {IA} - {k_2}\overrightarrow {ID} } \over {1 - {k_2}}} + {q \over 2}\left( {\overrightarrow {IC} + \overrightarrow {ID} } \right) \cr & \Leftrightarrow \left( {{1 \over {1 - {k_1}}} + {p \over {1 - {k_2}}}} \right)\overrightarrow {IA} - \left( {{{{k_1}} \over {1 - {k_1}}} + {q \over 2}} \right)\overrightarrow {IC} \cr& + \left( {{{p{k_2}} \over {1 - {k_2}}} - {q \over 2}} \right)\overrightarrow {ID} = \overrightarrow 0 \cr} \)
    Do \(\overrightarrow {IA} ,\overrightarrow {IC} ,\overrightarrow {ID} \) không đồng phẳng nên đẳng thức trên tương đương với
    \(\eqalign{ & \left\{ \matrix{ {1 \over {1 - {k_1}}} + {p \over {1 - {k_2}}} = 0 \hfill \cr {{{k_1}} \over {1 - {k_1}}} + {q \over 2} = 0 \hfill \cr {{p{k_2}} \over {1 - {k_2}}} - {q \over 2} = 0 \hfill \cr} \right. \cr & \Rightarrow {{{k_1}} \over {1 - {k_1}}} = - {{p{k_2}} \over {1 - {k_2}}} = {{{k_2}} \over {1 - {k_1}}} \cr} \)
    hay k1 = k2

    Câu 10 trang 115 Sách bài tập Hình học 11 Nâng cao.
    Cho ba tia Ox, Oy, Oz không đồng phẳng.
    a) Đặt \(\widehat {xOy} = \alpha ,\widehat {yOz} = \beta ,\widehat {{\rm{zOx}}} = \gamma \) . Chứng minh rằng:
    \(\cos \alpha + \cos \beta + \cos \gamma > - {3 \over 2}\)
    b) Gọi \(O{x_1},O{y_1},O{z_1}\) lần lượt là các tia phân giác của các góc xOy, yOz, zOx. Chứng minh rằng nếu Ox1 và Oy1 vuông góc với nhau thì Oz1 vuông góc với cả Ox1 và Oy1.
    Trả lời:
    Lấy \({E_1},{E_2},{E_3}\) lần lượt thuộc các tia Ox, Oy, Oz sao cho \(O{E_1} = O{E_2} = O{E_3}\).
    Đặt \(\overrightarrow {O{E_1}} = \overrightarrow {{e_1}} ,\overrightarrow {O{E_2}} = \overrightarrow {{e_2}} ,\overrightarrow {O{E_3}} = \overrightarrow {{e_3}} \).
    a) Do ba tia Ox, Oy, Oz không đồng phẳng nên\({\left( {{{\overrightarrow e }_1} + {{\overrightarrow e }_2} + {{\overrightarrow e }_3}} \right)^2} > 0\),
    tức là
    \(\eqalign{ & \overrightarrow e _1^2 + \overrightarrow e _2^2 + \overrightarrow e _3^2 \cr&+ 2\left( {{{\overrightarrow e }_1}.{{\overrightarrow e }_2} + {{\overrightarrow e }_2}.{{\overrightarrow e }_3} + {{\overrightarrow e }_3}.\overrightarrow {{e_1}} } \right) > 0 \cr & \Leftrightarrow 3{\rm{O}}E_1^2 + 2OE_1^2\left( {\cos \alpha + \cos \beta + \cos \gamma } \right) > 0 \cr} \)
    Vậy \(\cos \alpha + cos\beta + cos\gamma > - {3 \over 2}\)
    Dễ thấy
    \(\eqalign{ & \overrightarrow {O{E_1}} + \overrightarrow {O{E_2}} //O{x_1} \cr & \overrightarrow {O{E_2}} + \overrightarrow {O{E_3}} //O{y_1} \cr & \overrightarrow {O{E_3}} + \overrightarrow {O{E_1}} //O{z_1} \cr & O{x_1} \bot O{y_1} \Leftrightarrow \left( {\overrightarrow {O{E_1}} + \overrightarrow {O{E_2}} } \right)\left( {\overrightarrow {O{E_2}} + \overrightarrow {O{E_3}} } \right) = 0 \cr} \)
    hay \({\overrightarrow {O{E_2}} ^2} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_2}} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_3}} + \overrightarrow {O{E_2}} .\overrightarrow {O{E_3}} = 0\)
    Ta có:
    \(\eqalign{ & \left( {\overrightarrow {O{E_1}} + \overrightarrow {O{E_2}} } \right)\left( {\overrightarrow {O{E_3}} + \overrightarrow {O{E_1}} } \right) \cr & = {\overrightarrow {O{E_1}} ^2} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_2}} + \overrightarrow {O{E_2}} .\overrightarrow {O{E_3}} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_3}} \cr} \)
    \(= 0\)
    Vậy \(O{x_1} \bot O{z_1}\)
    Tương tự, ta cũng có \(O{y_1} \bot O{z_1}\)

    Câu 11 trang 115 Sách bài tập Hình học 11 Nâng cao.
    Trong không gian cho ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) khác vectơ – không.
    a) Nếu có \(\overrightarrow a - 3\overrightarrow b + 2\overrightarrow c = \overrightarrow 0 \) thì ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) có đồng phẳng không?
    b) Giả sử có \(m\overrightarrow a + n\overrightarrow b + p\overrightarrow c = \overrightarrow 0 \) trong đó m, n, p là các số thực. Với điều kiện nào của m, n, p thì ba vectơ đó đồng phẳng?
    Trả lời:
    a) \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng.
    b) \({m^2} + {n^2} + {p^2} > 0\).

    Câu 12 trang 115 Sách bài tập Hình học 11 Nâng cao.
    Cho hai đường thẳng ∆, ∆1 cắt ba mặt phẳng song song (α), (β), (γ) lần lượt tại A, B, C và A1, B1, C1. Với điểm O bất kì trong không gian, đặt \(\overrightarrow {OI} = \overrightarrow {A{A_1}} ,\overrightarrow {OJ} = \overrightarrow {B{B_1}} ,\overrightarrow {OK} = \overrightarrow {C{C_1}} \) . Chứng minh rằng ba điểm I, J, K thẳng hàng.
    Trả lời
    Theo giả thiết, ta có:
    \(\overrightarrow {OI} = \overrightarrow {A{A_1}} ,\overrightarrow {OJ} = \overrightarrow {B{B_1}} ,\overrightarrow {OK} = \overrightarrow {C{C_1}} \) .
    Do (α), (β), (γ) song song với nhau, hai đường thẳng ∆, ∆1 cắt chúng lần lượt tại A, B, C và A1, B1, C1 nên theo định lí Ta-lét, ta có:
    \(\overrightarrow {BA} = k\overrightarrow {BC} \) và \(\overrightarrow {{B_1}{A_1}} = k\overrightarrow {{B_1}{C_1}} \)
    Từ \(\overrightarrow {BA} = k\overrightarrow {BC} \) nên với điểm O, ta có:
    \(\overrightarrow {OB} = {{\overrightarrow {OA} - k\overrightarrow {OC} } \over {1 - k}}\)
    Tương tự, ta cũng có:
    \(\overrightarrow {O{B_1}} = {{\overrightarrow {O{A_1}} - k\overrightarrow {O{C_1}} } \over {1 - k}}\)
    Từ đó: \(\overrightarrow {B{B_1}} = \overrightarrow {O{B_1}} - \overrightarrow {OB} = {{\overrightarrow {A{A_1}} } \over {1 - k}} - {k \over {1 - k}}\overrightarrow {C{C_1}} \)
    hay \(\overrightarrow {OJ} = {1 \over {1 - k}}\overrightarrow {OI} - {k \over {1 - k}}\overrightarrow {OK} \)
    Lấy O trùng với I, ta có \(\overrightarrow {IJ} = - {k \over {1 - k}}\overrightarrow {IK} \)
    Như vậy ba điểm I, J, K thẳng hàng.

    Câu 13 trang 115 Sách bài tập Hình học 11 Nâng cao.
    Cho tứ diện ABCD. Gọi I, J, H, K, E, F lần lượt là trung điểm của các cạnh AB, CD, BC, AD, AC, BD. Chứng minh rằng
    \(A{B^2} + C{{\rm{D}}^2} + A{C^2} + B{{\rm{D}}^2} + B{C^2} + A{{\rm{D}}^2} \)
    \(= 4\left( {I{J^2} + H{K^2} + E{F^2}} \right)\)
    Trả lời
    15.jpg
    Trước hết, ta chứng minh
    \(A{C^2} + B{{\rm{D}}^2} + B{C^2} + A{{\rm{D}}^2} = A{B^2} + C{{\rm{D}}^2} + 4I{J^2}\)
    Đặt \(\overrightarrow {DA} = \overrightarrow a ,\overrightarrow {DB} = \overrightarrow b ,\overrightarrow {DC} = \overrightarrow c \)
    Ta có:
    \(\eqalign{ & \overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AD} + \overrightarrow {DJ} \cr & = - {{\overrightarrow {AB} } \over 2} + \overrightarrow {AD} + {{\overrightarrow {DC} } \over 2} \cr & = - {1 \over 2}\left( { - \overrightarrow a + \overrightarrow b } \right) + \left( { - \overrightarrow a } \right) + \left( {{{\overrightarrow c } \over 2}} \right) \cr & = {{ - \overrightarrow a - \overrightarrow b + \overrightarrow c } \over 2} \cr & {\overrightarrow {AB} ^2} + {\overrightarrow {CD} ^2} + 4{\overrightarrow {IJ} ^2} \cr & = {\left( {\overrightarrow b - \overrightarrow a } \right)^2} + {\overrightarrow c ^2} + {\left( {\overrightarrow a + \overrightarrow b - \overrightarrow c } \right)^2} \cr & = 2{\overrightarrow b ^2} + 2{\overrightarrow a ^2} + 2{\overrightarrow c ^2} - 2\overrightarrow a .\overrightarrow c - 2\overrightarrow b .\overrightarrow c \cr & {\overrightarrow {AC} ^2} + {\overrightarrow {BD} ^2} + {\overrightarrow {BC} ^2} + {\overrightarrow {AD} ^2} \cr & = {\left( {\overrightarrow c - \overrightarrow a } \right)^2} + {\overrightarrow b ^2} + {\left( {\overrightarrow c - \overrightarrow b } \right)^2} + {\overrightarrow a ^2} \cr & = 2{\overrightarrow a ^2} + 2{\overrightarrow b ^2} + 2{\overrightarrow c ^2} - 2\overrightarrow a .\overrightarrow c - 2\overrightarrow b .\overrightarrow c \cr} \)
    Vậy, ta có:
    \(A{C^2} + B{{\rm{D}}^2} + B{C^2} + A{{\rm{D}}^2} = A{B^2} + C{{\rm{D}}^2} + 4I{J^2}\)
    Tương tự, ta có:
    \(A{C^2} + B{{\rm{D}}^2} + A{B^2} + C{{\rm{D}}^2}\)
    \(= B{C^2} + A{{\rm{D}}^2} + 4H{K^2}\)
    \( A{B^2} + C{{\rm{D}}^2} + B{C^2} + A{{\rm{D}}^2} \)
    \(= A{C^2} + B{D^2} + 4E{F^2} \)
    Từ đó suy ra:
    \(A{B^2} + C{{\rm{D}}^2} + A{C^2} + B{{\rm{D}}^2} + B{C^2} + A{{\rm{D}}^2}\)
    \(= 4\left( {I{J^2} + H{K^2} + E{F^2}} \right)\)

    Câu 14 trang 115 Sách bài tập Hình học 11 Nâng cao.
    Cho tứ diện ABCD. Lấy các điểm M, N, P. Q lần lượt thuộc AB, BC, CD, DA sao cho
    \(\overrightarrow {AM} = {1 \over 3}\overrightarrow {AB} ,\overrightarrow {BN} = {2 \over 3}\overrightarrow {BC},\)
    \(\overrightarrow {AQ} = {1 \over 2}\overrightarrow {A{\rm{D}}} ,\overrightarrow {DP} = k\overrightarrow {DC}. \)
    Hãy xác định k để bốn điểm P, Q, M, N cùng nằm trên một mặt phẳng.
    Trả lời
    16.jpg
    Cách 1
    Từ \(\overrightarrow {AM} = {1 \over 3}\overrightarrow {AB} \) ta có \(\overrightarrow {BM} = {2 \over 3}\overrightarrow {BA} \) , mặt khác \(\overrightarrow {BN} = {2 \over 3}\overrightarrow {BC} \) nên MN // AC.
    Nếu có k để các điểm M, N, P, Q thuộc một mặt phẳng thì mp(MNQ) cắt mp(ACD) theo giao tuyến PQ nên PQ // AC.
    Mặt khác \(\overrightarrow {AQ} = {1 \over 2}\overrightarrow {A{\rm{D}}} \) nên \(\overrightarrow {DP} = {1 \over 2}\overrightarrow {DC} \).
    Vậy \(k = {1 \over 2}\) thì các điểm M, N, P, Q cùng thuộc một mặt phẳng.
    Cách 2:
    Đặt \(\overrightarrow {DA} = \overrightarrow a ,\overrightarrow {DB} = \overrightarrow b ,\overrightarrow {DC} = \overrightarrow c \) .
    Khi đó \(\overrightarrow {BC} = \overrightarrow c - \overrightarrow b ,\overrightarrow {AB} = \overrightarrow b - \overrightarrow a \).
    Do \(\overrightarrow {AM} = {1 \over 3}\overrightarrow {AB} \)
    nên
    $$\eqalign{
    & \overrightarrow {AM} = {1 \over 3}\left( {\overrightarrow b - \overrightarrow a } \right) = - {1 \over 3}\overrightarrow a + {1 \over 3}\overrightarrow b \cr
    & \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {BN} = \overrightarrow b - \overrightarrow a + {2 \over 3}\left( {\overrightarrow c - \overrightarrow b } \right) \cr
    & = - \overrightarrow a + {1 \over 3}\overrightarrow b + {2 \over 3}\overrightarrow c \cr
    & \overrightarrow {AP} = \overrightarrow {A{\rm{D}}} + \overrightarrow {DP} = - \overrightarrow a + k\overrightarrow {DC} = - \overrightarrow a + k\overrightarrow c \cr
    & \overrightarrow {AQ} = - {1 \over 2}\overrightarrow a \cr} $$
    Khi đó
    \(\eqalign{ & \overrightarrow {MN} = - {2 \over 3}\overrightarrow a + {2 \over 3}\overrightarrow c \cr & \overrightarrow {MP} = - {2 \over 3}\overrightarrow a - {1 \over 3}\overrightarrow b + k\overrightarrow c \cr & \overrightarrow {MQ} = - {1 \over 6}\overrightarrow a - {1 \over 3}\overrightarrow b \cr} \)
    Các điểm M, N, P, Q thuộc một mặt phẳng khi và chỉ khi có số x, y sao cho
    \(\eqalign{& \overrightarrow {MP} = x\overrightarrow {MN} + y\overrightarrow {MQ} \cr & \Leftrightarrow - {2 \over 3}\overrightarrow a - {1 \over 3}\overrightarrow b + k\overrightarrow c \cr & = - {2 \over 3}x\overrightarrow a + {2 \over 3}x\overrightarrow c - {1 \over 6}y\overrightarrow a - {1 \over 3}y\overrightarrow b \cr} \)
    Do \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng nên điều đó tương đương với:
    \(\eqalign{ & \left\{ \matrix{ - {2 \over 3}x - {1 \over 6}y = - {2 \over 3} \hfill \cr - {1 \over 3}y = - {1 \over 3} \hfill \cr {2 \over 3}x = k \hfill \cr} \right. \cr & \Rightarrow y = 1,x = {3 \over 4},k = {1 \over 2} \cr} \)
    Vậy khi \(k = {1 \over 2}\) thì các điểm M, N, P, Q thuộc cùng một mặt phẳng.

    Câu 15 trang 115 Sách bài tập Hình học 11 Nâng cao.
    Cho hình hộp ABCD.A’B’C’D’. Một đường thẳng ∆ cắt các đường thẳng AA’, BC, C’D’ lần lượt tại M, N, P sao cho \(\overrightarrow {NM} = 2\overrightarrow {NP} \) . Tính \({{MA} \over {MA'}}\)
    Trả lời
    17.jpg
    Đặt \(\overrightarrow {A{\rm{D}}} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AA'} = \overrightarrow c \) . Vì M thuộc đường thẳng AA’ nên
    \(\overrightarrow {AM} = k\overrightarrow {AA'} = k\overrightarrow c \).
    N là điểm thuộc đường thẳng BC nên \(\overrightarrow {BN} = l\overrightarrow a \);
    P là điểm thuộc đường thẳng C’D’ nên \(\overrightarrow {C'P} = m\overrightarrow b \)
    Với k, l, m là những số thực.
    Ta có:
    \(\eqalign{ & \overrightarrow {NM} = \overrightarrow {NB} + \overrightarrow {BA} + \overrightarrow {AM} = - l\overrightarrow a - \overrightarrow b + k\overrightarrow c \cr & \overrightarrow {NP} = \overrightarrow {NB} + \overrightarrow {BB'} + \overrightarrow {B'C'} + \overrightarrow {C'P'} \cr & = - l\overrightarrow a + \overrightarrow c + \overrightarrow a + m\overrightarrow b \cr & = \left( {1 - l} \right)\overrightarrow a + m\overrightarrow b + \overrightarrow c \cr} \)
    Do \(\overrightarrow {NM} = 2\overrightarrow {NP} \) nên ta có:
    \(\left\{ \matrix{ - l = 2\left( {1 - l} \right) \hfill \cr - 1 = 2m \hfill \cr k = 2 \hfill \cr} \right. \Rightarrow k = 2,m = - {1 \over 2},l = 2\)
    Vậy \({{MA} \over {MA'}} = 2\)