Tìm công thức tổng quát dãy số bằng Hàm số Hypebolic

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪

    TÌM CÔNG THỨC TÍNH SHTQ CỦA DÃY SỐ BẰNG HÀM HYPEBOLIC

    I. Lời nói đầu:
    Bài toán tìm công thức tính số hạng tổng quát của một dãy số cho dưới dạng truy hồi là một bài toán rất đa dạng và thường gặp trong những đề thi Olympic, thi học sinh giỏi quốc gia, quốc tế. Có nhiều hướng tiếp cận bài toán này và có nhiều cách giải khác nhau.

    Trong bài viết này tôi giải quyết bái toán bằng cách sử dụng các hàm hypebolic .

    II. Nội dung:

    II.1. Giới thiệu các hàm Hypebolic.

    $\bullet $ Hàm sin hypebolic định bởi: ${\mathop{\rm sh}\nolimits} x = \frac{{{e^x} - {e^{ - \,x}}}}{2}$ có tập xác định $\mathbb{R}$ và tập giá trị $\mathbb{R}$

    $\bullet $ Hàm cos hyperbolic định bởi: ${\mathop{\rm ch}\nolimits} x = \frac{{{e^x} + {e^{ - \,x}}}}{2}$ có tập xác định $\mathbb{R}$ và tập giá trị $\left[ {1, + \infty } \right)$

    $\bullet $ Hàm tan hyperbolic định bởi: ${{\mathop{\rm th}\nolimits} x} = \frac{{{\mathop{\rm sh}\nolimits} x}}{{{\mathop{\rm ch}\nolimits} x}} = \frac{{{e^x} - {e^{ - \,x}}}}{{{e^x} + {e^{ - \,x}}}}$ có tập xác định $\mathbb{R}$ và tập giá trị $\left( { - 1,1} \right)$

    $\bullet $ Hàm cot hyperbolic định bởi: $\coth x = \frac{{{\mathop{\rm ch}\nolimits} x}}{{{\mathop{\rm sh}\nolimits} x}} = \frac{{{e^x} + {e^{ - \,x}}}}{{{e^x} - {e^{ - \,x}}}}$ có tập xác định $\mathbb{R}\backslash \left\{ 0 \right\}$ và tập giá trị $\left( { - \,\infty \,,\, - 1} \right) \cup \left( {1\,,\, + \,\infty } \right)$

    Các tính chất sau bạn đọc có thể tự chứng minh:

    1. $c{h^2}x - s{h^2}x = 1$

    2. $ch\left( {x \pm y} \right) = chx.chy \pm shx.shy$

    3. $sh\left( {x \pm y} \right) = chx.shy \pm chy.shx$

    4. $sh\left( {2x} \right) = 2shx.chx$

    5. $sh\left( {3x} \right) = 4s{h^3}x + 3shx$

    6. $ch\left( {2x} \right) = c{h^2}x + s{h^2}x = 2c{h^2}x - 1 = 2s{h^2}x + 1$

    7. $ch\left( {3x} \right) = 4c{h^3}x - 3chx$

    8. $ch\left( {4x} \right) = 8c{h^4}x - 8c{h^2}x + 1 = 8s{h^4}x + 8s{h^2}x + 1$

    9. $sh\left( {4x} \right) = 8s{h^3}x.chx + 4shx.chx = 8s{h^3}x\sqrt {1 + s{h^2}x} + 4shx\sqrt {1 + s{h^2}x} $

    10. $th\left( {2x} \right) = \frac{{2thx}}{{1 + t{h^2}x}}$

    11. $th\left( {3x} \right) = \frac{{t{h^3}x + 3thx}}{{1 + 3t{h^2}x}}$

    II.2 Các dạng thường gặp.

    1. Dạng 1: $\left\{ \begin{array}{l} \mathbf{\textbf{Cho}\,\,\,{u_1}}\\ \mathbf{{u_{n + 1}} = 2u_n^2 - 1;\,\,\forall n \in \mathbb{N^*}} \end{array} \right.$

    Ta xét các trường hợp sau:

    * Trường hợp 1:

    Nếu ${u_1} = 1$ thì ta được ${u_n}=1,\,\,\,\forall n \in \mathbb{{N}^*}$

    Nếu ${u_1} = -1$ thì ta được ${u_n}=1,\,\,\,\forall n \ge 2$

    * Trường hợp 2:

    Nếu $-1<{u_1}<1$ thì ta đặt ${u_1}= \cos\alpha;\,\,\,\,\alpha \in \left( {0,\pi } \right)$

    Chứng minh quy nạp ta được: ${u_n}=\cos\left({{2^{n-1}}\alpha} \right).$

    * Trường hợp 3: Nếu ${u_1}>1$ thì ta đặt ${u_1}=ch \alpha$. Chứng minh quy nạp ta được ${u_n} = ch\left( {{2^{n - 1}}\alpha } \right)$

    Lưu ý: ${u_1} = ch\alpha \Leftrightarrow {u_1} = \frac{{{e^\alpha } + {e^{ - \,\alpha }}}}{2}$. Giải phương trình ta chỉ cần chọn một nghiệm $e^{\alpha}$.

    Khi đó: ${u_n} = \frac{{{{\left( {{e^\alpha }} \right)}^{{2^{n - 1}}}} + {{\left( {{e^{ - \,\alpha }}} \right)}^{{2^{n - 1}}}}}}{2}$

    * Trường hợp 4: Nếu ${u_1}<-1$ thì ta đặt ${u_1}=-ch \alpha$. Chứng minh quy nạp ta được ${u_n} = ch\left( {{2^{n - 1}}\alpha } \right),\,\,\,\,\forall n \ge 2$

    Các dạng dãy số quy về dạng 1

    1.1. Dạng: $\left\{ \begin{array}{l} \mathbf{\textbf{Cho}\,\,{u_1}}\\ \mathbf{{u_{n + 1}} = u_n^2 - 2\,,\,\,\forall n \in \mathbb{N^*}} \end{array} \right.$

    Đặt ${u_n}=2 {x_n}$ ta được: $\left\{ \begin{array}{l}
    {x_1} = \frac{1}{2}{u_1}\\ {x_{n + 1}} = 2x_n^2 - 1,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    1.2. Dạng: $\left\{ \begin{array}{l} \mathbf{\textbf{Cho}\,\,{u_1}}\\ \mathbf{{u_{n + 1}} = au_n^2 - \frac{2}{a}\,\,,\,\,\forall n \in \mathbb{N^*}} \end{array} \right.\,\,\,\,\,\,\,\mathbf{\left( {a \ne 0} \right)}$

    Đặt ${u_n}= \dfrac{2}{a} {x_n}$ ta được: $\left\{ \begin{array}{l} {x_1} = \frac{a}{2}{u_1}\\ {x_{n + 1}} = 2x_n^2 - 1\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    1.3. Dạng: $\left\{ \begin{array}{l} \mathbf{ \text{Cho}\,\,{u_1}}\\ \mathbf{{u_{n + 1}} = au_n^2 + b{u_n} + c\,,\,\,\forall n \in \mathbb{N^*}} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\mathbf{\left( {a \ne 0,\,c = \frac{{{b^2} - 2b - 8}}{{4a}}} \right)}$

    Ta đặt: ${u_n}=p {x_n} +q$, thế vào giả thiết và tìm $p,q$ để ta được: ${x_{n + 1}} = 2x_n^2 - 1$

    1.4. Dạng: $\left\{ \begin{array}{l} \mathbf{ \text{Cho}\,\,{u_1}}\\ \mathbf{{u_{n + 1}} = u_n^2 - 2{a^{{2^n}}}\,\,,\,\,\forall n \in \mathbb{N^*}} \end{array} \right. \,\,\,\,\,\, \mathbf{(a \ne 0)}$

    Đặt ${u_n} = 2{a^{{2^{n - 1}}}}{x_n}$ ta được: $\left\{ \begin{array}{l} {x_1} = \frac{1}{{2a}}{u_1}\\
    {x_{n + 1}} = 2x_n^2 - 1\,,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    1.5. Dạng: $\left\{ \begin{array}{l} \mathbf{ \text{Cho}\,\,{u_1}}\\ \mathbf{{u_{n + 1}} = 2{a^{{2^n}}}u_n^2 - {a^{\left( {n + 1} \right){2^n}}}\,\,,\,\,\forall n \in \mathbb{N^*}} \end{array} \right.\,\,\,\,\,\,\, \mathbf{\left( {a \ne 0} \right)}$

    Đặt ${u_n} = {a^{n{2^{n - 1}}}}{x_n}$ ta được: $\left\{ \begin{array}{l} {x_1} = \frac{1}{a}{u_1}\\ {x_{n + 1}} = 2x_n^2 - 1 \end{array} \right.$

    1.6. Dạng: $\left\{ \begin{array}{l} \mathbf{ \text{Cho}\,\,\,{u_1} \ge - 2}\\ \mathbf{{u_{n + 1}} = \sqrt {2 + {u_n}} \,;\,\,\forall n \in \mathbb{N^*}} \end{array} \right.$

    Ta xét các trường hợp sau:

    * Trường hợp 1: Nếu $ - 2 \le {u_1} \le 2$ thì ta đặt ${u_1}=2\cos \alpha;\,\,\, \alpha \in \left({0, \pi} \right)$ rồi áp dụng công thức $1 + \cos \alpha = 2{\cos ^2}\frac{\alpha }{2}$, chứng minh quy nạp ta được: ${u_n} = 2\cos \frac{\alpha }{{{2^{n - 1}}}}\,,\,\,\forall n \in \mathbb{N^*}$

    * Trường hợp 2: Nếu ${u_1}>2$ thì ta đặt ${u_1} = 2ch\alpha $ rồi áp dụng công thức $1 + ch\left( {2\alpha } \right) = 2c{h^2}\alpha $, chứng minh quy nạp ta được: ${u_n} = 2ch\frac{\alpha }{{{2^{n - 1}}}}\,,\,\,\forall n \in \mathbb{N^*}$

    1.7. Dạng: $\left\{ \begin{array}{l} \mathbf{ \text{Cho}\,\,{u_1}}\\ \mathbf{{u_{n + 1}} = 2{u_n}\sqrt {1 + u_n^2} \,,\,\,\forall n \in \mathbb{N^*}} \end{array} \right.$

    Đặt $sh \alpha = {u_1}$, giải phương trình để tìm $e^\alpha$

    Chứng minh quy nạp ta được: $${u_n} = sh\left( {{2^{n - 1}}\alpha } \right) = \dfrac{{{{\left( {{e^\alpha }} \right)}^{{2^{n - 1}}}} - {{\left( {{e^{ - \,\alpha }}} \right)}^{{2^{n - 1}}}}}}{2}$$
    Dạng mở rộng: $\left\{ \begin{array}{l} \text{Cho}\,\,{u_1}\\ {u_{n + 1}} = b\left( {{u_n} + c} \right)\sqrt {u_n^2 + 2c{u_n} + {c^2} + {a^2}} - c\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$ Với $a,\,b >0 $ và $ab=2$

    1.8. Dạng: $\left\{ \begin{array}{l} \mathbf{ \text{Cho}\,\,{u_1} > 1}\\ \mathbf{{u_{n + 1}} = a.{u_n} + b\sqrt {u_n^2 - 1} \,,\,\,\forall n \in \mathbb{N^*}} \end{array} \right.\,\,\,\,\textbf{với}\,\,\, \mathbf{a>0}\,\,\,\textbf{ và}\,\,\,\,\mathbf{ a^2 - b^2 =1}$

    Đặt $\left\{ \begin{array}{l} ch\beta = a\\ sh\beta = b \end{array} \right.$, giải hệ để tìm ${e^\beta }$ và đặt $\left\{ \begin{array}{l} ch\alpha = {u_1}\\ sh\alpha = \sqrt {u_1^2 - 1} \end{array} \right.$, giải hệ để tìm ${e^\alpha }$

    Ta được: ${u_2} = ch\alpha .ch\beta + sh\alpha .sh\beta = ch\left( {\alpha + \beta } \right)$

    Chứng minh quy nạp ta được: $${u_n} = ch\left[ {\alpha + \left( {n - 1} \right)\beta } \right]\, = \frac{{\left( {{e^\alpha }} \right){{\left( {{e^\beta }} \right)}^{n - 1}} + \left( {\frac{1}{{{e^\alpha }}}} \right){{\left( {\frac{1}{{{e^\beta }}}} \right)}^{n - 1}}}}{2},\,\,\forall n \in \mathbb{N^*}$$
    Dạng mở rộng: $\left\{ \begin{array}{l}\text{Cho}\,\,{u_1}\\ {u_{n + 1}} = \frac{{{u_n}}}{{a + \sqrt {cu_n^2 + b} }}\,\,\,,\,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$ với $\alpha > 0,\,\,a > 0$ và $a^2 - b =1$

    Biến đổi: $\frac{1}{{{u_{n + 1}}}} = \frac{{a + \sqrt {cu_n^2 + b} }}{{{u_n}}} = a\left( {\frac{1}{{{u_n}}}} \right) + \sqrt {c + b\left( {\frac{1}{{u_n^2}}} \right)} $. Đặt ${x_n} = \frac{1}{{{u_n}}}$ ta đưa về dạng trên

    1.9. Dạng: $\left\{ \begin{array}{l} \mathbf{ \text{Cho}\,\,{u_1}}\\ \mathbf{{u_{n + 1}} = \frac{{2{u_n}}}{{1 + u_n^2}}\,,\,\,\forall n \in \mathbb{N^*}} \end{array} \right.$

    Dạng này ta chia trường hợp như sau:

    * Nếu ${u_1}=1$ hay ${u_1}=-1$ thì ${u_n}=1$ hay ${u_n}=-1$

    * Nếu $-1 < {u_1} < 1$ thì ta đặt ${u_1}=th \alpha$

    Chứng minh quy nạp ta được: $${u_n} = th\left( {{2^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^\alpha }} \right)}^{{2^{n - 1}}}} - {{\left( {{e^{ - \,\alpha }}} \right)}^{{2^{n - 1}}}}}}{{{{\left( {{e^\alpha }} \right)}^{{2^{n - 1}}}} + {{\left( {{e^{ - \,\alpha }}} \right)}^{{2^{n - 1}}}}}} = \frac{{{{\left( {{e^{2\alpha }}} \right)}^{{2^{n - 1}}}} - 1}}{{\left( {{e^{2\alpha }}} \right) + 1}}\,,\,\,\forall n \in \mathbb{N^*}$$
    * Nếu ${u_1} < -1$ hay ${u_1} > 1$ thì ta đặt ${u_1} = \coth \alpha = \frac{1}{{th\alpha }}$

    Chứng minh quy nạp ta được: $${u_n} = th\left( {{2^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^{2\alpha }}} \right)}^{{2^{n - 1}}}} - 1}}{{\left( {{e^{2\alpha }}} \right) + 1}}\,,\,\,\forall n \ge 2$$
    1.10. Dạng: $\left\{ \begin{array}{l} \mathbf{ \text{Cho}\,\,{u_1}}\\ \mathbf{{u_{n + 1}} = 4u_n^3 - 3{u_n}\,,\,\,\forall n \in \mathbb{N^*}} \end{array} \right.\,\,\,\,\,\,\,\,\mathbf{\left( a \right)}$ và $\left\{ \begin{array}{l}
    \mathbf{\text{Cho}\,\,{u_1}}\\ \mathbf{{u_{n + 1}} = 4u_n^3 + 3{u_n}\,,\,\,\forall n \in \mathbb{N^*}} \end{array} \right.\,\,\,\,\,\,\,\mathbf{\left( b \right)}$

    Với dạng 1.10a) Ta xét các trường hợp sau:

    * Trường hợp 1: Nếu ${u_1}=1$ hay ${u_1}=-1$ thì ta được ${u_n}=1$ hay ${u_n}=-1,\,\,\,\,\,\,\forall \in \mathbb{N^*}$

    * Trường hợp 2: Nếu $-1 < {u_1} <1$ thi ta đặt ${u_1}=\cos \alpha;\,\,\, \alpha \in \left({0; \pi} \right)$

    Chứng minh quy nạp ta được: ${u_n} = \cos \left( {{3^{n - 1}}\alpha } \right)$

    * Trường hợp 3: Nếu ${u_1}>1$ thì ta đặt ${u_1}=ch \alpha$.

    Chứng minh quy nạp ta được: $${u_n} = ch\left( {{3^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^\alpha }} \right)}^{{3^{n - 1}}}} + {{\left( {{e^\alpha }} \right)}^{{3^{n - 1}}}}}}{2}$$
    * Trường hợp 4: Nếu ${u_1}<-1$ thì ta đặt $-{u_1}=ch \alpha$

    Chứng minh quy nạp ta được: $${u_n} = - \,ch\left( {{3^{n - 1}}\alpha } \right) = - \,\frac{{{{\left( {{e^\alpha }} \right)}^{{3^{n - 1}}}} + {{\left( {{e^\alpha }} \right)}^{{3^{n - 1}}}}}}{2}$$
    Với dạng 1.10b) ta đặt ${u_1}=sh \alpha$. Chứng minh quy nạp ta được: $${u_n} = sh\left( {{3^{n - 1}}\alpha } \right) = \,\frac{{{{\left( {{e^\alpha }} \right)}^{{3^{n - 1}}}} - {{\left( {{e^\alpha }} \right)}^{{3^{n - 1}}}}}}{2}$$

    Các dạng dãy số quy về dạng 1.10.

    1.10.1. Dạng: $\left\{ \begin{array}{l} \text{Cho}\,\,{u_1}\\ {u_{n + 1}} = au_n^3\, \pm 3{u_n}\,\,;\,\,\forall n \in \mathbb {N^*} \end{array} \right.\,\,\,\,\,\,\left( {a > 0} \right)$

    Nhận xét: Ta tìm cách quy về dạng trên như sau: Đặt ${u_n}=b{v_n}$.

    Thế vào giả thiết ta được: $b{v_{n + 1}} = a{b^3}v_n^3 \pm 3b{v_n} \Rightarrow {v_{n + 1}} = a{b^2}v_n^3 \pm 3{v_n}$

    Ta cần tìm $b$ sao cho $a{b^2} = 4 \Leftrightarrow b = \frac{2}{{\sqrt a }}$

    1.10.2. Dạng: $\left\{ \begin{array}{l} {u_1} = \alpha \\ {u_{n + 1}} = au_n^3 + bu_n^2 + c{u_n} + d\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    với $a>0,\,c = \frac{{{b^2}}}{{3a}}\,,\,\,d = \frac{{b\left( {c - 3} \right)}}{{9a}}\,,\,\,\alpha > - \,\frac{b}{{3a}}$ hay $a>0,\,c = \frac{{{b^2} + 9a}}{{3a}}\,,\,\,d = \frac{{{b^3} + 18ab}}{{27{a^2}}}\,,\,\,\alpha > \frac{2}{{\sqrt a }} - \frac{b}{{3a}}$

    Đặt ${u_n}=a{v_n}+b$, thế vào giả thiết rồi tìm hai số $a, b$ sao cho ${v_{n + 1}} = 4v_n^3 \pm 3{v_n}$

    1.11. Dạng: $\left\{ \begin{array}{l}
    \mathbf{ \text{Cho}\,\,{u_1}}\\
    \mathbf{{u_{n + 1}} = 8u_n^4 - 8u_n^2 + 1\,,\,\,\forall n \in \mathbb{N^*}}
    \end{array} \right.\,\,\,\,\,\,\mathbf{\left( a \right)}$ và $\left\{ \begin{array}{l}
    \mathbf{ \text{Cho}\,\,{u_1}}\\
    \mathbf{{u_{n + 1}} = \left( {8u_n^3 + 4{u_n}} \right)\sqrt {1 + u_n^2} \,,\,\,\forall n \in \mathbf{N^*}}
    \end{array} \right.\,\,\,\,\,\,\mathbf{\left( b \right)}$

    Với dạng 1.11a) Ta xét các trường hợp sau:

    * Trường hợp 1:

    Nếu ${u_1} = 1$ thì ta được ${u_n} = 1,\,\,\forall \in \mathbb{N^*}$

    Nếu ${u_1} = – 1$ thì ta được ${u_n} = 1,\,\,\forall n \le 2$

    * Trường hợp 2: Nếu $– 1 < {u_1} < 1$ thì ta đặt ${u_1} = \cos \alpha;\,\,\,\alpha \in \left({0; \pi} \right)$.

    Chứng minh quy nạp ta được: ${u_n} = \cos \left( {{4^{n - 1}}\alpha } \right)$

    * Trường hợp 3 : Nếu ${u_1} > 1$ thì ta đặt ${u_1} = ch \alpha$.

    Chứng minh quy nạp ta được: $${u_n} = ch\left( {{4^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^\alpha }} \right)}^{{4^{n - 1}}}} + {{\left( {{e^\alpha }} \right)}^{{4^{n - 1}}}}}}{2}$$
    * Trường hợp 4: Nếu ${u_1}< – 1$ thì ta đặt $– {u_1} = ch \alpha$.

    Chứng minh quy nạp ta được: $${u_n} = \,ch\left( {{4^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^\alpha }} \right)}^{{4^{n - 1}}}} + {{\left( {{e^\alpha }} \right)}^{{4^{n - 1}}}}}}{2}\,,\,\,\forall n \ge 2$$
    Với dạng 1.11b) ta đặt ${u_1} = sh \alpha$. Chứng minh quy nạp ta được: $${u_n} = sh\left( {{4^{n - 1}}\alpha } \right) = \,\frac{{{{\left( {{e^\alpha }} \right)}^{{4^{n - 1}}}} - {{\left( {{e^\alpha }} \right)}^{{4^{n - 1}}}}}}{2}$$

    1.12. Dạng: $\left\{ \begin{array}{l}
    \mathbf{ \text{Cho}\,\,{u_1}}\\
    \mathbf{{u_{n + 1}} = \frac{{u_n^3 + 3{u_n}}}{{1 + 3u_n^2}}\,,\,\,\forall n \in \mathbb{N^*}}
    \end{array} \right.$

    Ta xét các trường hợp sau:

    * Nếu ${u_1} = 1$ hay ${u_1} = – 1$ thì ${u_n} = 1$ hay ${u_n} = – 1$

    * Nếu $– 1 < {u_1} < 1$ thì ta đặt $th \alpha ={u_1}$.

    Chứng minh quy nạp ta được: $${u_n} = th\left( {{3^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^{2\alpha }}} \right)}^{{3^{n - 1}}}} - 1}}{{{{\left( {{e^{2\alpha }}} \right)}^{{3^{n - 1}}}} + 1}}$$
    * Nếu ${u_1} < – 1$ hay ${u_1} > 1$ thì ta đặt $coth \alpha ={u_1}$ .

    Chứng minh quy nạp ta được: $${u_n} = \coth \left( {{3^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^{2\alpha }}} \right)}^{{3^{n - 1}}}} + 1}}{{{{\left( {{e^{2\alpha }}} \right)}^{{3^{n - 1}}}} - 1}}$$

    Bây giờ, chúng ta hãy xét một số ví dụ sau.

    Ví dụ 1: Tìm số hạng tổng quát của dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l}
    {u_1} = \frac{1}{3}\\
    {u_{n + 1}} = 3u_n^2 - \frac{2}{3}\,,\,\,\forall n \in \mathbb{N^*}
    \end{array} \right.$

    Giải: Đặt ${u_n} = \frac{2}{3}{x_n}$ ta được dãy số $({x_n})$ định bởi: $\left\{ \begin{array}{l}
    {x_1} = \frac{1}{2}\\
    {x_{n + 1}} = 2x_n^2 - 1,\,\,\forall n \in \mathbb{N^*}
    \end{array} \right.$

    Ta có: ${x_1} = \cos \frac{\pi }{3}$. Giả sử ${x_n} = \cos \left( {{2^{n - 1}}\frac{\pi }{3}} \right)$. Khi đó ${x_{n + 1}} = 2{\cos ^2}\left( {{2^{n - 1}}\frac{\pi }{3}} \right) - 1 = \cos \left( {{2^n}\frac{\pi }{3}} \right)$

    Vậy: ${x_n} = \cos \left( {{2^{n - 1}}\frac{\pi }{3}} \right)$ suy ra ${u_n} = \frac{2}{3}\cos \left( {{2^{n - 1}}\frac{\pi }{3}} \right)$

    Ví dụ 2: Tìm số hạng tổng quát của dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l}
    {u_1} = \frac{{15}}{2}\\
    {u_{n + 1}} = u_n^2 - {2.3^{{2^n}}},\,\,\forall n \in \mathbb{N^*}
    \end{array} \right.$

    Giải: Đặt ${u_n} = {2.3^{{2^{n - 1}}}}{x_n}$ ta được dãy số $({x_n})$ định bởi: $\left\{ \begin{array}{l}
    {x_1} = \frac{5}{4}\\
    {x_{n + 1}} = 2x_n^2 - 1,\,\,\forall n \in \mathbb{N^*}
    \end{array} \right.$

    Đặt $ch\alpha = \frac{5}{2} \Leftrightarrow \frac{{{e^\alpha } + {e^{ - \,\alpha }}}}{2} = \frac{5}{4}$, giải phương trình ta chọn nghiệm ${e^\alpha } = 2$

    Ta có: ${x_1} = ch\alpha $. Giả sử ${x_n} = ch\left( {{2^{n - 1}}\alpha } \right)$. Khi đó: ${x_{n + 1}} = 2c{h^2}\left( {{2^{n - 1}}\alpha } \right) - 1 = ch\left( {{2^n}\alpha } \right)$

    Vậy: ${x_n} = ch\left( {{2^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^\alpha }} \right)}^{{2^{n - 1}}}} + {{\left( {{e^{ - \,\alpha }}} \right)}^{{2^{n - 1}}}}}}{2} = \frac{{{2^{{2^{n - 1}}}} + {{\left( {\frac{1}{2}} \right)}^{{2^{n - 1}}}}}}{2}$ suy ra ${u_n} = {6^{{2^{n - 1}}}} + {\left( {\frac{3}{2}} \right)^{{2^{n - 1}}}}$

    Ví dụ 3: Tìm số hạng tổng quát của dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l}
    {u_1} = 3\\
    {u_{n + 1}} = \sqrt {2 + {u_n}} \,,\,\,\forall n \in \mathbb{N^*}
    \end{array} \right.$

    Giải: Đặt ${u_1} = 2ch\alpha \Leftrightarrow 3 = {e^\alpha } + {e^{ - \,\alpha }}$. Giải phương trình ta chọn nghiệm ${e^\alpha } = \frac{{3 + \sqrt 5 }}{2}$

    Giả sử ${u_n} = 2ch\frac{\alpha }{{{2^{n - 1}}}}$. Khi đó: $${u_{n + 1}} = \sqrt {2 + 2ch\frac{\alpha }{{{2^{n - 1}}}}} = \sqrt {2\left( {1 + ch\frac{\alpha }{{{2^{n - 1}}}}} \right)} = \sqrt {4c{h^2}\frac{\alpha }{{{2^n}}}} = 2c{h^2}\frac{\alpha }{{{2^n}}}$$
    Vậy: $${u_n} = 2ch\frac{\alpha }{{{2^{n - 1}}}} = {\left( {{e^\alpha }} \right)^{\frac{1}{{{2^{n - 1}}}}}} + {\left( {\frac{1}{{{e^\alpha }}}} \right)^{\frac{1}{{{2^{n - 1}}}}}} = {\left( {\frac{{3 + \sqrt 5 }}{2}} \right)^{\frac{1}{{{2^{n - 1}}}}}} + {\left( {\frac{{3 - \sqrt 5 }}{2}} \right)^{\frac{1}{{{2^{n - 1}}}}}}\,,\,\,\forall n \in \mathbb{N^*}$$

    Ví dụ 4: Tìm số hạng tổng quát của dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l} {u_1} = \frac{5}{4}\\ {u_{n + 1}} = 2{u_n} + \sqrt {3u_n^2 - 3} \,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Giải: Đặt $\left\{ \begin{array}{l} ch\beta = 2\\ sh\beta = \sqrt 3 \end{array} \right.$. Giải hệ ta được ${e^\beta } = 2 + \sqrt 3 $

    Đặt $\left\{ \begin{array}{l} ch\alpha = \frac{5}{4}\\ sh\alpha = \sqrt {{{\left( {\frac{5}{4}} \right)}^2} - 1} = \frac{3}{4} \end{array} \right.$. Giải hệ ta được ${e^\alpha } = 2$

    Ta có: ${u_1} = ch \alpha$. Giả sử ${u_n} = ch\left[ {\alpha + \left( {n - 1} \right)\beta } \right]$. Khi đó: $$ch\beta .ch\left[ {\alpha + \left( {n - 1} \right)\beta } \right] + sh\alpha .sh\left[ {\alpha + \left( {n - 1} \right)\beta } \right] = ch\left( {\alpha + n\beta } \right)$$
    Vậy: $${u_n} = \frac{{{e^{\alpha + \left( {n - 1} \right)\beta }} + {e^{ - \,\alpha - \,\left( {n - 1} \right)\beta }}}}{2} = {\left( {2 + \sqrt 3 } \right)^{n - 1}} + \frac{1}{4}{\left( {2 - \sqrt 3 } \right)^{n - 1}}$$


    Ví dụ 5: Tìm số hạng tổng quát của dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l} {u_1} = 3\\ {u_{n + 1}} = \frac{1}{2}{u_n}\sqrt {16 + u_n^2} \,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Giải: Biến đổi giả thiết: $\frac{{{u_{n + 1}}}}{4} = 2\left( {\frac{{{u_n}}}{4}} \right)\sqrt {1 + {{\left( {\frac{{{u_n}}}{4}} \right)}^2}} $

    Đặt ${x_n} = \frac{{{u_n}}}{4}$ ta được dãy $({x_n})$ định bởi: $\left\{ \begin{array}{l} {x_1} = \frac{3}{4}\\ {x_{n + 1}} = 2{x_n}\sqrt {1 + x_n^2} \,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Đặt $sh\alpha = \frac{3}{4} \Leftrightarrow \frac{{{e^\alpha } - {e^{ - \,\alpha }}}}{2} = \frac{3}{4}$. Giải phương trình ta được ${e^\alpha } = 2$

    Ta có: ${x_1} = sh\alpha $. Giả sử ${x_n} = sh\left( {{2^{n - 1}}\alpha } \right)$. Khi đó: $${x_{n + 1}} = 2sh\left( {{2^{n - 1}}\alpha } \right)\sqrt {1 + s{h^2}\left( {{2^{n - 1}}\alpha } \right)} = 2sh\left( {{2^{n - 1}}\alpha } \right)ch\left( {{2^{n - 1}}\alpha } \right) = sh\left( {{2^n}\alpha } \right)$$
    Vậy: $${x_n} = sh\left( {{2^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^\alpha }} \right)}^{{2^{n - 1}}}} - {{\left( {{e^{ - \,\alpha }}} \right)}^{{2^{n - 1}}}}}}{2}\,\,\,\text{ suy ra}\,\,\, {u_n} = 2\left( {{2^{{2^{n - 1}}}} - {{\left( {\frac{1}{2}} \right)}^{{2^{n - 1}}}}} \right)$$
    Ví dụ 6: Tìm số hạng tổng quát của dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l} {u_1} = \frac{3}{{\sqrt 6 }}\\ {u_{n + 1}} = 24u_n^3 - 12\sqrt 6 u_n^2 + 15{u_n} - \sqrt 6 \,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$


    Nhận xét: Đặt ${u_n} = a{x_n} + b$, thay vào giả thiết và rút gọn ta được: $$a{x_{n + 1}} + b = 24{a^3}x_n^3 + 12\left( {6{a^2}b - \sqrt 6 {a^2}} \right)x_n^2 + 3\left( {24a{b^2} - 8\sqrt 6 ab + 5a} \right){x_n} + 24{b^3} - 12\sqrt 6 {b^2} + 15b - \sqrt 6 $$
    Đầu tiên ta chọn $b$ sao cho: $\left\{ \begin{array}{l} 6{a^2}b - \sqrt 6 {a^2} = 0\\ 24{b^3} - 12\sqrt 6 {b^2} + 15b - \sqrt 6 = b \end{array} \right. \Rightarrow b = \frac{1}{{\sqrt 6 }}$


    Khi đó: $a{x_{n + 1}} = 24{a^3}x_n^3 + 3a{x_n}\,\,\text{hay}\,\,{x_{n + 1}} = 24{a^2}x_n^3 + 3{x_n}$

    Giải: Đặt ${u_n} = \frac{1}{{\sqrt 6 }}{x_n} + \frac{1}{{\sqrt 6 }}$ ta được dãy số $({x_n})$ định bởi: $\left\{ \begin{array}{l} {x_1} = 2\\ {x_{n + 1}} = 4x_n^3 + 3{x_n} \end{array} \right.$

    Đặt $sh\alpha = 2 \Leftrightarrow \frac{{{e^\alpha } - {e^{ - \,\alpha }}}}{2} = 2$. Giải phương trình ta chọn nghiệm ${e^\alpha } = 2 + \sqrt 5 $

    Áp dụng công thức $sh\left( {3\alpha } \right) = 4s{h^3}\alpha + 3sh\alpha $, rồi chứng minh quy nạp ta được:
    $${x_n} = sh\left( {{3^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^\alpha }} \right)}^{{3^{n - 1}}}} - {{\left( {{e^{ - \,\alpha }}} \right)}^{{3^{n - 1}}}}}}{2} = \frac{{{{\left( {2 + \sqrt 5 } \right)}^{{3^{n - 1}}}} - {{\left( {\dfrac{1}{{2 + \sqrt 5 }}} \right)}^{{3^{n - 1}}}}}}{2}$$
    Vậy: ${u_n} = \frac{1}{{2\sqrt 6 }}\left[ {{{\left( {2 + \sqrt 5 } \right)}^{{3^{n - 1}}}} - {{\left( {\frac{1}{{2 + \sqrt 5 }}} \right)}^{{3^{n - 1}}}}} \right] + \frac{1}{{\sqrt 6 }}$


    Ví dụ 7: Tìm số hạng tổng quát của dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = \frac{{ - \,u_n^2}}{{u_n^2 + 2{u_n} + 2}}\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Giải: Biến đổi giả thiết: ${u_{n + 1}} + 1 = \frac{{2\left( {{u_{n + 1}} + 1} \right)}}{{1 + {{\left( {{u_{n + 1}} + 1} \right)}^2}}}$

    Đặt ${x_n} = {u_n} + 1$ ta được dãy số $({x_n})$ định bởi: $\left\{ \begin{array}{l} {x_1} = 2\\ {x_{n + 1}} = \frac{{2{x_n}}}{{1 + x_n^2}}\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Đặt $\coth \alpha = 2 \Leftrightarrow \frac{{{e^\alpha } + {e^{ - \,\alpha }}}}{{{e^\alpha } - {e^{ - \,\alpha }}}} = 2$. Giải phương trình ta được: ${e^\alpha } = \sqrt 3 $

    Ta có: ${x_2} = \frac{{2\coth \alpha }}{{1 + {{\coth }^2}\alpha }} = \frac{{2\frac{1}{{th\alpha }}}}{{1 + \frac{1}{{t{h^2}\alpha }}}} = \frac{{2th\alpha }}{{1 + t{h^2}\alpha }} = th\left( {2\alpha } \right)$

    Giả sử ${x_n} = th\left( {{2^{n - 1}}\alpha } \right)$. Khi đó: ${x_{n + 1}} = \frac{{2th\left( {{2^{n - 1}}\alpha } \right)}}{{1 + t{h^2}\left( {{2^{n - 1}}\alpha } \right)}} = th\left( {{2^n}\alpha } \right)$

    Vậy: ${x_n} = th\left( {{2^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^{2\alpha }}} \right)}^{{2^{n - 1}}}} - 1}}{{{{\left( {{e^{2\alpha }}} \right)}^{{2^{n - 1}}}} + 1}} = \frac{{{3^{{2^{n - 1}}}} - 1}}{{{3^{{2^{n - 1}}}} + 1}}\,\,\,\text {suy ra}\,\,\,\,{u_n} = \frac{{ - \,2}}{{{3^{{2^{n - 1}}}} + 1}},\,\,\,\forall n \ge 2$

    Ví dụ 8: Tìm số hạng tổng quát của dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l} {u_1} = \frac{5}{4}\\ {u_{n + 1}} = \frac{{u_n^3 + 3{u_n}}}{{1 + 3u_n^2}}\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Giải: Đặt $\coth \alpha = {u_1} \Leftrightarrow \frac{{{e^\alpha } + {e^{ - \,\alpha }}}}{{{e^\alpha } - {e^{ - \,\alpha }}}} = \frac{5}{4}$. Giải phương trình ta được: ${e^\alpha } = 3$

    Giả sử ${u_n} = \coth \left( {{3^{n - 1}}\alpha } \right)$. Khi đó: ${u_{n + 1}} = \frac{{{{\coth }^3}\left( {{3^{n - 1}}\alpha } \right) + 3\coth \left( {{3^{n - 1}}\alpha } \right)}}{{1 + 3{{\coth }^2}\left( {{3^{n - 1}}\alpha } \right)}} = \dfrac{{\dfrac{1}{{t{h^3}\left( {{3^{n - 1}}\alpha } \right)}} + \dfrac{3}{{th\left( {{3^{n - 1}}\alpha } \right)}}}}{{1 + \dfrac{3}{{t{h^2}\left( {{3^{n - 1}}\alpha } \right)}}}}$

    Vậy: ${u_n} = \coth \left( {{3^{n - 1}}\alpha } \right) = \frac{{{9^{{3^{n - 1}}}} + 1}}{{{9^{{3^{n - 1}}}} - 1}}$

    Ví dụ 9: Cho dãy $({x_n})$ định bởi: $\left\{ \begin{array}{l} {x_1} = 4\\ {x_{n + 1}} = x_n^2 - 2\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$ Tính $\lim \left( {\frac{{{x_{n + 1}}}}{{{x_1}{x_2}...{x_n}}}} \right)$

    Giải: Đặt ${x_n} = 2{u_n}$ ta được dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l} {u_n} = 2\\ {u_{n + 1}} = 2u_n^2 - 1\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Đặt $ch\alpha = 2 \Leftrightarrow \frac{{{e^\alpha } + {e^{ - \,\alpha }}}}{2} = 2$, giải phương trình ta chọn nghiệm ${e^\alpha } = 2 + \sqrt 3 $

    Chứng minh quy nạp ta được: ${u_n} = ch\left( {{2^{n - 1}}\alpha } \right)$ suy ra ${x_n} = 2ch\left( {{2^{n - 1}}\alpha } \right)$

    Ta có: $${x_{n + 1}} = 2ch\left( {{2^n}\alpha } \right) = {\left( {{e^\alpha }} \right)^{{2^n}}} + {\left( {{e^{ - \,\alpha }}} \right)^{{2^n}}} = {\left( {2 + \sqrt 3 } \right)^{{2^n}}} + {\left( {2 - \sqrt 3 } \right)^{{2^n}}}$$
    $${x_1}{x_2}...{x_n} = {2^n}ch\left( \alpha \right).ch\left( {2\alpha } \right)....ch\left( {{2^{n - 1}}\alpha } \right) = \frac{{{2^n}}}{{sh\alpha }}sh\left( \alpha \right).ch\left( \alpha \right).ch\left( {2\alpha } \right)....ch\left( {{2^{n - 1}}\alpha } \right)$$

    \[ = \frac{{sh\left( {{2^n}\alpha } \right)}}{{sh\alpha }} = \frac{{{{\left( {{e^\alpha }} \right)}^{{2^n}}} - {{\left( {{e^{ - {\kern 1pt} \alpha }}} \right)}^{{2^n}}}}}{{{e^\alpha } - {e^{ - {\kern 1pt} \alpha }}}} = \frac{{{\rm{ }}{{\left( {2 + \sqrt 3 } \right)}^{{2^n}}} - {{\left( {2 - \sqrt 3 } \right)}^{{2^n}}}}}{{2\sqrt 3 }}\]
    Từ đó dễ dàng tính được $\lim \left( {\frac{{{x_{n + 1}}}}{{{x_1}{x_2}...{x_n}}}} \right) = 2\sqrt 3 $

    Ví dụ 10: Tìm số hạng tổng quát của dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l} {u_1} = 3\\ {u_{n + 1}} = \left( {8u_n^3 + 4{u_n}} \right)\sqrt {1 + u_n^2} \,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Giải: Đặt $sh\alpha = 3 \Leftrightarrow \frac{{{e^\alpha } - {e^{ - \,\alpha }}}}{2} = 3$. Giải phương trình ta được: ${e^\alpha } = 3 + \sqrt {10} $

    Giả sử ${u_n} = sh\left( {{4^{n - 1}}\alpha } \right)$.

    Khi đó: ${u_{n + 1}} = \left[ {8s{h^3}\left( {{4^{n - 1}}\alpha } \right) + 4sh\left( {{4^{n - 1}}\alpha } \right)} \right]\sqrt {1 + s{h^2}\left( {{4^{n - 1}}\alpha } \right)} = sh\left( {{4^n}\alpha } \right)$

    Vậy: ${u_n} = sh\left( {{4^{n - 1}}\alpha } \right) = \frac{1}{2}\left[ {{{\left( {{e^\alpha }} \right)}^{{4^{n - 1}}}} - {{\left( {\frac{1}{{{e^\alpha }}}} \right)}^{{4^{n - 1}}}}} \right] = \frac{1}{2}\left[ {{{\left( {\sqrt {10} + 3} \right)}^{{4^{n - 1}}}} - {{\left( {\sqrt {10} - 3} \right)}^{{4^{n - 1}}}}} \right]$

    Ví dụ 11: (Đề thi Olympic đề nghị của trường Lê Hồng Phong TPHCM năm 2009)

    Tìm số hạng tổng quát của dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l} {u_1} = m\\ {u_{n + 1}} = u_n^4 - 12u_n^3 + 50u_n^2 - 84{u_n} + 50\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Giải: Đặt ${u_n} = {x_n} + 3$ ta được: $\left\{ \begin{array}{l} {x_1} = m - 3\\ {x_{n + 1}} = x_n^4 - 4x_n^2 + 2\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Đặt ${x_n} = 2{v_n}$ ta được: $\left\{ \begin{array}{l} {v_1} = \frac{{m - 3}}{2}\\ {v_{n + 1}} = 8v_n^4 - 8v_n^2 + 1\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    * Nếu $m = 5$ ta được ${v_n} = 1$ suy ra ${u_n} = 5,\,\, \forall n \in \mathbb{N^*}$

    * Nếu $m = 1$ ta được ${u_1} = 1,\, {u_n} = 5, \,\forall n \ge 2$

    * Nếu $\left| {\frac{{m - 3}}{2}} \right| < 1 \Leftrightarrow 1 < m < 5$. Đặt ${v_1} = \cos \alpha $

    Áp dụng công thức $\cos 4\alpha = 8{\cos ^4}\alpha - 8{\cos ^2}\alpha + 1$ ta được ${v_2} = \cos \left( {4\alpha } \right)$

    Chứng minh quy nạp ta được ${v_n} = \cos \left( {{4^{n - 1}}\alpha } \right)$ suy ra ${u_n} = 2\cos \left( {{4^{n - 1}}\alpha } \right) + 3\,,\,\,\forall n \in \mathbb{N^*}$

    * Nếu $\frac{{m - 3}}{2} > 1 \Leftrightarrow m > 5$. Đặt $ch\alpha = \frac{{m - 3}}{2} \Leftrightarrow \frac{{{e^\alpha } + {e^{ - \,\alpha }}}}{2} = \frac{{m - 3}}{2} \Leftrightarrow {e^{2\alpha }} - \left( {m - 3} \right){e^\alpha } + 1 = 0$

    Giải phương trình ta lấy nghiệm ${e^\alpha } = \frac{{m - 3 + \sqrt {{m^2} - 6m + 5} }}{2}$

    Chứng minh quy nạp ta được: ${v_n} = \frac{1}{2}\left( {{{\left( {{e^\alpha }} \right)}^{{4^{n - 1}}}} + {{\left( {{e^{ - \,\alpha }}} \right)}^{{4^{n - 1}}}}} \right)$

    Suy ra: ${u_n} = {\left( {{e^\alpha }} \right)^{{4^{n - 1}}}} + {\left( {{e^{ - \,\alpha }}} \right)^{{4^{n - 1}}}} + 3\,,\,\,\forall n \in \mathbb{N^*}$

    * Nếu $\frac{{m - 3}}{2} < - 1 \Leftrightarrow m < 1$. Đặt $ch\alpha = \frac{{3 - m}}{2} \Leftrightarrow \frac{{{e^\alpha } + {e^{ - \,\alpha }}}}{2} = \frac{{3 - m}}{2} \Leftrightarrow {e^{2\alpha }} + \left( {m - 3} \right){e^\alpha } + 1 = 0$

    Giải phương trình ta lấy nghiệm ${e^\alpha } = \frac{{3 - m + \sqrt {{m^2} - 6m + 5} }}{2}$

    Chứng minh quy nạp ta được: ${v_n} = \frac{1}{2}\left( {{{\left( {{e^\alpha }} \right)}^{{4^{n - 1}}}} + {{\left( {{e^{ - \,\alpha }}} \right)}^{{4^{n - 1}}}}} \right)\,,\,\,\forall n \ge 2$

    Suy ra: ${u_n} = {\left( {{e^\alpha }} \right)^{{4^{n - 1}}}} + {\left( {{e^{ - \,\alpha }}} \right)^{{4^{n - 1}}}} + 3\,,\,\,\forall n \ge 2$

    Ví dụ 12: (Trích đề thi chọn đội tuyển TPHCM _2012)

    Tìm số hạng tổng quát của dãy số $({x_n})$ định bởi: $\left\{ \begin{array}{l} {x_1} = \frac{4}{5}\\ {x_{n + 1}} = \frac{{x_n^4}}{{x_n^4 - 8x_n^2 + 8}}\,,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Giải: Từ giả thiết ta được ${x_n} > 0,\,\,\forall n \in \mathbb{N^*}$ và $\frac{1}{{{x_{n + 1}}}} = 8{\left( {\frac{1}{{{x_n}}}} \right)^4} - 8{\left( {\frac{1}{{{x_n}}}} \right)^2} + 1$

    Đặt ${u_n} = \frac{1}{{{x_n}}}$ ta được dãy số $({u_n})$ định bởi: $\left\{ \begin{array}{l} {u_1} = \frac{5}{4}\\ {u_{n + 1}} = 8u_n^4 - 8u_n^2 + 1,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$

    Đặt $ch\alpha = \frac{5}{2} \Leftrightarrow \frac{{{e^\alpha } + {e^{ - \,\alpha }}}}{2} = \frac{5}{4}$, giải phương trình ta chọn nghiệm ${e^\alpha } = 2$

    Chứng minh quy nạp ta được: $${u_n} = ch\left( {{4^{n - 1}}\alpha } \right) = \frac{{{{\left( {{e^\alpha }} \right)}^{{4^{n - 1}}}} + {{\left( {{e^{ - \,\alpha }}} \right)}^{{4^{n - 1}}}}}}{2} = \frac{{{2^{^{{4^{n - 1}}}}} + {{\left( {\dfrac{1}{2}} \right)}^{{4^{n - 1}}}}}}{2}$$
    (Áp dụng công thức: $ch(4x) = 8ch^4x – 8ch^2x + 1$)


    Vậy: ${x_n} = \frac{2}{{{2^{{4^{n - 1}}}} + {{\left( {\dfrac{1}{2}} \right)}^{{4^{n - 1}}}}}}$

    Ví dụ 13: Cho hai dãy số $({x_n})$ và $({y_n})$ xác định như sau: ${x_1}=a>0,\,{y_1}=b>0,\,\,\,{x_{n + 1}} = \frac{{{x_n} + {y_n}}}{2}$, ${y_{n + 1}} = \sqrt {{x_{n + 1}}.{y_n}} \,\,,\,\,\forall n \in \mathbb{N^*}$. Tìm $\lim {x_n}\,\,\text{và}\,\,\lim {y _n}$

    Giải: Ta xét các trường hợp sau:

    * Trường hợp 1: Nếu $a = b$ thì ${x_n} = {y_n} = a, \,\,\forall n \in \mathbb{N^*}$ nên $lim{x_n} = lim{y_n} = 1$

    * Trường hợp 2: Nếu $a < b$ thì đặt $\cos \alpha = \frac{a}{b}\,\,\,,\,\,\alpha \in \left( {0\,,\,\frac{\pi }{2}} \right)$. Khi đó ta có:
    $${x_2} = \frac{{b\left( {1 + \dfrac{a}{b}} \right)}}{2} = \frac{{b\left( {1 + \cos \alpha } \right)}}{2} = b{\cos ^2}\frac{\alpha }{2}\,\,\,\text{và}\,\,\, {y_2} = \sqrt {{x_2}{y_1}} = \sqrt {{b^2}{{\cos }^2}\frac{\alpha }{2}} = b\cos \frac{\alpha }{2}$$
    $${x_3} = \frac{{{x_2} + {y_2}}}{2} = \dfrac{{b\cos \dfrac{\alpha }{2}\left( {1 + \cos \dfrac{\alpha }{2}} \right)}}{2} = b\cos \frac{\alpha }{2}\cos \frac{\alpha }{{{2^2}}}\,\,\,\text{và}\,\,\, {y_3} = \sqrt {{x_3}{y_2}} = b\cos \frac{\alpha }{2}\cos \frac{\alpha }{{{2^2}}}$$
    Chứng minh quy nạp ta được:
    $${x_n} = b\left( {\cos \frac{\alpha }{2}.\cos \frac{\alpha }{{{2^2}}}....\cos \frac{\alpha }{{{2^{n - 1}}}}} \right){\cos ^2}\frac{\alpha }{{{2^n}}}\,\,\,\text{và}\,\,\,{y_n} = b\cos \frac{\alpha }{2}\cos \frac{\alpha }{{{2^2}}}...\cos \frac{\alpha }{{{2^n}}},\,\forall n \ge 2$$
    Áp dụng công thức: $\cos x = \frac{{{\mathop{\rm s}\nolimits} {\rm{in2}}x}}{{2\sin x}}$ ta rút gọn được ${y_n} = b\frac{{\sin \alpha }}{{{2^n}\sin \dfrac{\alpha }{{{2^n}}}}}$


    Vì $\lim \left( {{2^n}\sin \frac{\alpha }{{{2^n}}}} \right) = \lim \left( {\alpha \frac{{\sin \dfrac{\alpha }{{{2^n}}}}}{{\dfrac{\alpha }{{{2^n}}}}}} \right) = \alpha $ nên $\lim {y_n} = \frac{{b\sin \alpha }}{\alpha }$

    Từ ${x_n} = {y_n}\cos \frac{\alpha }{{{2^n}}} \Rightarrow \lim {x_n} = \lim \left( {{y_n}\cos \frac{\alpha }{{{2^n}}}} \right) = \left( {\lim {y_n}} \right)\left( {\lim \cos \frac{\alpha }{{{2^n}}}} \right) = \frac{{b\sin \alpha }}{\alpha }$

    * Trường hợp 3: Nếu $a > b$, chọn số $\alpha$ sao cho ${\mathop{\rm ch}\nolimits} \alpha = \frac{a}{b}$

    $${x_2} = \frac{{b\left( {1 + \dfrac{a}{b}} \right)}}{2} = \frac{{b\left( {1 + {\mathop{\rm ch}\nolimits} \alpha } \right)}}{2} = b{{\mathop{\rm ch}\nolimits} ^2}\frac{\alpha }{2}\,\,\,\text{và}\,\,\, {y_2} = \sqrt {{x_2}{y_1}} = \sqrt {{b^2}{{{\mathop{\rm ch}\nolimits} }^2}\frac{\alpha }{2}} = b{\mathop{\rm ch}\nolimits} \frac{\alpha }{2}$$
    $${x_3} = \frac{{{x_2} + {y_2}}}{2} = \frac{{b{\mathop{\rm ch}\nolimits} \dfrac{\alpha }{2}\left( {1 + {\mathop{\rm ch}\nolimits} \dfrac{\alpha }{2}} \right)}}{2} = b{\mathop{\rm ch}\nolimits} \frac{\alpha }{2}{\mathop{\rm ch}\nolimits} \frac{\alpha }{{{2^2}}}\,\,\,\text{và}\,\,\, {y_3} = \sqrt {{x_3}{y_2}} = b{\mathop{\rm ch}\nolimits} \frac{\alpha }{2}{\mathop{\rm ch}\nolimits} \frac{\alpha }{{{2^2}}}$$
    Chứng minh quy nạp ta được:
    $${x_n} = b\left( {{\mathop{\rm ch}\nolimits} \frac{\alpha }{2}.{\mathop{\rm ch}\nolimits} \frac{\alpha }{{{2^2}}}....{\mathop{\rm ch}\nolimits} \frac{\alpha }{{{2^{n - 1}}}}} \right){{\mathop{\rm ch}\nolimits} ^2}\frac{\alpha }{{{2^n}}}\,\,\,\text{và}\,\,\,{y_n} = b{\mathop{\rm ch}\nolimits} \frac{\alpha }{2}{\mathop{\rm ch}\nolimits} \frac{\alpha }{{{2^2}}}...{\mathop{\rm ch}\nolimits} \frac{\alpha }{{{2^n}}},\,\,\forall n \ge 2$$
    Áp dụng công thức: ${\mathop{\rm ch}\nolimits} x = \frac{{sh\,{\rm{2}}x}}{{2shx}}$ ta rút gọn được ${y_n} = b\frac{{{\mathop{\rm sh}\nolimits} \alpha }}{{{2^n}.{\mathop{\rm sh}\nolimits} \dfrac{\alpha }{{{2^n}}}}}$


    Đặt $x = \frac{\alpha }{{{2^n}}}$, khi $n\, \to + \infty $ thì $x \to 0$
    $$\lim \left( {{2^n}.{\mathop{\rm sh}\nolimits} \frac{\alpha }{{{2^n}}}} \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\alpha \left( {{e^x} - {e^{ - x}}} \right)}}{{2x}} = \mathop {\lim }\limits_{x \to 0} \left( {\frac{\alpha }{{{e^x}}}.\frac{{{e^{2x}} - 1}}{{2x}}} \right) = \alpha$$
    $$\text{nên}\,\,\,\lim {y_n} = \frac{{b{\mathop{\rm sh}\nolimits} \alpha }}{\alpha },\,\,\,\lim \left( {{\mathop{\rm ch}\nolimits} \frac{\alpha }{{{2^n}}}} \right) = \mathop {\lim }\limits_{x\, \to \,0} \frac{{{e^x} + {e^{ - x}}}}{2} = 1$$
    $$\text{và}\,\,\,{x_n} = {y_n}.\cosh \frac{\alpha }{{{2^n}}} \Rightarrow \lim {x_n} = \lim \left( {{y_n}.{\mathop{\rm ch}\nolimits} \frac{\alpha }{{{2^n}}}} \right) = \left( {\lim {y_n}} \right)\left( {\lim {\mathop{\rm ch}\nolimits} \frac{\alpha }{{{2^n}}}} \right) = \frac{{b{\mathop{\rm sh}\nolimits} \alpha }}{\alpha }.$$


    II. Bài tập áp dụng

    Bài 1: Tìm công thức tính số hạng tổng quát của các dãy số sau:
    a) $\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = 5u_n^2 - \frac{2}{5}\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$
    b) $\left\{ \begin{array}{l}{u_1} = 1\\ {u_{n + 1}} = 5u_n^2 - \frac{2}{5}\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$
    c)
    $\left\{ \begin{array}{l}u_1 = \frac{1}{3}\\u_{n + 1} = 6u_n^2 + 8u_n + \frac{5}{3}\,\,\,\forall n \in \mathbb{N^*}\end{array} \right.$
    d) $\left\{ \begin{array}{l}{u_1} = 20\\{u_{n + 1}} = u_n^2 - {2.5.2^n}\,,\,\,\forall n \in \mathbb{N^*}\end{array} \right.$
    e) $\left\{ \begin{array}{l}{u_1} = 5\\{u_{n + 1}} = {2.3^{{2^n}}}u_n^2 - {3^{\left( {n + 1} \right){2^n}}}\,,\,\,\forall n \in \mathbb{N^*}\end{array} \right.$
    f) $\left\{ \begin{array}{l}{u_1} = 0\\{u_{n + 1}} = \frac{{\sqrt {3{u_n} + 8} }}{3} - 2\,,\,\,\forall n \in \mathbb{N^*}\end{array} \right.$


    Bài 2: Tìm công thức tính số hạng tổng quát của các dãy số sau:
    a) $\left\{ \begin{array}{l}{u_1} = - 3\\{u_{n + 1}} = 2{u_n}\sqrt {1 + u_n^2} \,,\,\,\forall n \in \mathbb{N^*}\end{array} \right.$
    b) $\left\{\begin{array}{l}{u_1} = - \,2\\{u_{n + 1}} = \frac{1}{2}{u_n} + \frac{1}{{{u_n}}}\,,\,\,\forall n \in\mathbb{N^*}\end{array} \right.$
    c) $\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = 2{u_n}\sqrt {u_n^2 - 4{u_n} + 5} - 4\sqrt {u_n^2 - 4{u_n} + 5} + 2\,,\,\,\forall n \in \mathbb{N^*}\end{array} \right.$
    d)
    $\left\{ \begin{array}{l}u_1 = 3\\u_{n + 1} = \dfrac{u_n^2 - 4}{u_n^2 + 2u_n + 2}\,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$
    e) $\left\{ \begin{array}{l}u_1 = 5\\u_{n + 1} = 3u_n + 2\sqrt {2u_n^2 - 2} \,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$
    f) $\left\{ \begin{array}{l}{u_1} = - \,2\\{u_{n + 1}} = 2\sqrt {u_n^2 + 1} + \sqrt 5 {u_n}\,,\,\,\forall n \in \mathbb{N^*}\end{array} \right.$

    Bài 3: Tìm công thức tính số hạng tổng quát của các dãy số sau:
    a)
    $\left\{ \begin{array}{l}u_1 = \dfrac{{\sqrt {2 + \sqrt 2 } }}{2} - 1\\u_{n + 1} = 4u_n^3 + 12u_n^2 + 9u_n\,\,\,\forall n \in \mathbb{N^*}\end{array} \right.$
    b) $\left\{ \begin{array}{l} {u_1} = \frac{3}{2}\\ {u_{n + 1}} = 4u_n^3 - 6u_n^2 + 6{u_n} - \frac{3}{2}\,,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$
    c) $\left\{ \begin{array}{l}u_1 = 1\\u_{n + 1} = \dfrac{u_n^3 - 3u_n - 6}{3u_n^2 + 6u_n +7}\,\,\,\forall n \in \mathbb{N^*}\end{array} \right.$

    Bài 4: Tìm công thức tính số hạng tổng quát của các dãy số sau:
    a)
    $\left\{ \begin{array}{l} u_1 = 3\\ u_{n + 1} = 8u_n^4 - 64u_n^3 + 184u_n^2 - 224u_n + 99\,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$
    b) $\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = \dfrac{{u_n^4}}{{u_n^4 + 8u_n^2 + 8}}\,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$
    c) $\left\{ \begin{array}{l} u_1 = 5\\ u_{n + 1} = \dfrac{u_n^4}{\left( 8 + 4u_n \right)\sqrt {1 + u_n^2}} \end{array} \right.$
    d) $\left\{ \begin{array}{l} u_1 = 2\\ u_{n + 1} = \dfrac{1 + 3u_n^2}{u_n^3 + 3u_n}\,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$
    e) $\left\{ \begin{array}{l} u_1 = 1\\ u_{n + 1} = \frac{u_n^3 + 6u_n^2 + 15u_n + 14}{3u_n^2 + 12u_n + 13}\,\,\,\forall n \in \mathbb{N^*} \end{array} \right.$