Tổng hợp bài tập trắc nghiệm rèn luyện tư duy chuyên đề Phân thức đại số

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Rút gọn biểu thức \(\dfrac{2x^2+x+4}{x^3+1}+\dfrac{x-1}{x^2-x+1}-\dfrac{2}{x+1}\)
    • \(\dfrac{x+2}{x^2-x+1}\)
    • \(\dfrac{2}{x+1}\)
    • \(\dfrac{x-2}{x^2+x+1}\)
    • \(\dfrac{x+1}{x^2+x+1}\)
    Hướng dẫn giải:

    \(\dfrac{2x^2+x+5}{x^3+1}+\dfrac{x-1}{x^2-x+1}-\dfrac{2}{x+1}\)
    \(=\dfrac{2x^2+x+5+\left(x-1\right)\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
    \(=\dfrac{2x^2+x+5+x^2-1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\)
    \(=\dfrac{x^2+3x+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
    \(=\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
    \(=\dfrac{x+2}{x^2-x+1}\)
     
  2. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Rút gọn biểu thức \(\dfrac{2x^2+x+4}{x^3+1}+\dfrac{x-1}{x^2-x+1}-\dfrac{2}{x+1}\)
    • \(\dfrac{x+2}{x^2-x+1}\)
    • \(\dfrac{2}{x+1}\)
    • \(\dfrac{x-2}{x^2+x+1}\)
    • \(\dfrac{x+1}{x^2+x+1}\)
    Hướng dẫn giải:

    \(\dfrac{2x^2+x+5}{x^3+1}+\dfrac{x-1}{x^2-x+1}-\dfrac{2}{x+1}\)
    \(=\dfrac{2x^2+x+5+\left(x-1\right)\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
    \(=\dfrac{2x^2+x+5+x^2-1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\)
    \(=\dfrac{x^2+3x+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
    \(=\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
    \(=\dfrac{x+2}{x^2-x+1}\)
     
  3. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Tìm phân thức Q thỏa mãn điều kiện \(\dfrac{1}{x^2+x+1}-Q=\dfrac{1}{x-x^2}+\dfrac{x^2+2x}{x^3-1}\).
    • \(-\dfrac{1}{x}\)
    • \(\dfrac{1}{x\left(x-1\right)}\)
    • \(\dfrac{1}{x^3-1}\)
    • \(\dfrac{2x}{x^3-1}\)
    Hướng dẫn giải:

    \(\dfrac{1}{x^2+x+1}-Q=\dfrac{1}{x-x^2}+\dfrac{x^2+2x}{x^3-1}\)
    \(=Q=\dfrac{1}{x^2+x+1}-\left(\dfrac{1}{x-x^2}+\dfrac{x^2+2x}{x^3-1}\right)\)
    \(=Q=\dfrac{1}{x^2+x+1}-\dfrac{1}{x-x^2}-\dfrac{x^2+2x}{x^3-1}\)
    \(=\dfrac{1}{x^2+x+1}+\dfrac{1}{x^2-x}-\dfrac{x^2+2x}{x^3-1}\)
    \(=\dfrac{x^2-x+x^2+x+1-x^3-2x^2}{x\left(x^3-1\right)}=\dfrac{1-x^3}{x\left(x^3-1\right)}=-\dfrac{1}{x}\)
     
  4. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
  5. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
  6. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Thực hiện phép tính \(\dfrac{x^3-27}{8x+16}.\dfrac{x^2-4}{x^2+3x+9}\)
    • \(\dfrac{\left(x-3\right)\left(x-2\right)}{8}\)
    • \(\dfrac{\left(x-3\right)\left(x+2\right)}{8}\)
    • \(\dfrac{x^2+3x+6}{8}\)
    • \(\dfrac{\left(x+2\right)\left(x-2\right)}{8}\)
    Hướng dẫn giải:

    \(\dfrac{x^3-27}{8x+16}.\dfrac{x^2-4}{x^2+3x+9}\)
    \(=\dfrac{\left(x-3\right)\left(x+3x+9\right).\left(x-2\right)\left(x+2\right)}{8\left(x+2\right)\left(x^2+3x+9\right)}\)
    \(=\dfrac{\left(x-3\right)\left(x-2\right)}{8}\)
     
  7. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
  8. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Làm tính nhân phân thức \(\dfrac{3x^2-6x+3}{4x+4}.\dfrac{2x^2-2}{3\left(x-1\right)^2}\)
    • \(\dfrac{x-1}{4}\)
    • \(\dfrac{x+1}{4}\)
    • \(\dfrac{x-1}{4\left(x+1\right)}\)
    • \(\dfrac{x-1}{12}\)
    Hướng dẫn giải:

    \(\dfrac{3x^2-6x+3}{4x+4}.\dfrac{2x^2-2}{3\left(x-1\right)^2}\)
    \(=\dfrac{3\left(x^2-2x+1\right)}{4\left(x+1\right)}.\dfrac{2\left(x-1\right)\left(x+1\right)}{3\left(x-1\right)^2}\)
    \(=\dfrac{3\left(x-1\right)^3\left(x+1\right)}{4.3\left(x+1\right)\left(x-1\right)^2}\)
    \(=\dfrac{x-1}{4}\)
     
  9. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Thực hiện phép nhân hai phân thức \(\dfrac{6x-3}{5x^2+x}.\dfrac{25x^2+10x+1}{1-8x^3}\)
    • \(\dfrac{-3\left(5x+1\right)}{x\left(4x^2+2x+1\right)}\)
    • \(\dfrac{3\left(5x+1\right)}{x\left(4x^2+2x+1\right)}\)
    • \(\dfrac{-3\left(5x+1\right)}{x\left(4x^2-2x+1\right)}\)
    • \(\dfrac{-3\left(5x-1\right)}{x\left(4x^2-2x+1\right)}\)
    Hướng dẫn giải:

    \(\dfrac{6x-3}{5x^2+x}.\dfrac{25x^2+10x+1}{1-8x^3}\)
    \(=\dfrac{3\left(2x-1\right)\left(5x+1\right)^2}{x\left(5x+1\right)\left(1-2x\right)\left(1+2x+4x^2\right)}\)
    \(=\dfrac{-3\left(5x+1\right)}{x\left(4x^2+2x+1\right)}\)
     
  10. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪