Tổng hợp lý thuyết và bài tập chuyên đề Tích phân

  1. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Trong các khẳng định sau, khẳng định nào sai ?
    • \(\left(\frac{1}{\cos x}\right)'=\frac{\sin x}{\cos^2x}\)
    • \(\int\limits^{\frac{\pi}{3}}_0\frac{x\sin x}{\cos^2x}dx=\frac{x}{\cos x}|^{\frac{\pi}{3}}_0-\int\limits^{\frac{\pi}{3}}_0\frac{1}{\cos x}dx\)
    • \(\int\limits^{\frac{\pi}{3}}_0\frac{1}{\cos x}dx=\int\limits^{\frac{\pi}{3}}_0\frac{d\left(\sin x\right)}{\sin^2x}=\frac{1}{2}\ln\left(\frac{1+\sin x}{1-\sin x}\right)|^{\frac{\pi}{3}}_0\)
    • \(\int\limits^{\frac{\pi}{3}}_0\frac{x\sin x}{\cos^2x}dx=\frac{2\pi}{3}-ln\left(2-\sqrt{3}\right)\)
    Hướng dẫn giải:

    Ta có:
    *) \(\left(\frac{1}{\cos x}\right)'=\frac{-\left(\cos x\right)'}{\cos^2x}=\frac{\sin x}{\cos^2x}\), sử dụng công thức này để tính tích phân từng phần trong tính tích phân các câu còn lại.
    *) Đặt \(\begin{cases}u=x\\v'=\frac{\sin x}{\cos^2x}\end{cases}\) Theo công thức trên suy ra \(\begin{cases}u'=1\\v=\frac{1}{\cos x}\end{cases}\)
    Vậy \(\int\limits^{\frac{\pi}{3}}_0\frac{x\sin x}{\cos^2x}dx=\frac{x}{\cos x}|^{\frac{\pi}{3}}_0-\int\limits^{\frac{\pi}{3}}_0\frac{1}{\cos x}dx\)
    Ta lại tính:
    \(\int\limits^{\frac{\pi}{3}}_0\frac{1}{\cos x}\text{d}x=\int\limits^{\frac{\pi}{3}}_0\frac{\cos x}{\cos^2x}\text{d}x=\int\limits^{\frac{\pi}{3}}_0\frac{\text{d}\left(\sin x\right)}{1-\sin^2x}\)
    \(=\int\limits^{\frac{\pi}{3}}_0\frac{1}{2}\left[\frac{1}{1-\sin x}+\frac{1}{1+\cos x}\right]\text{d}\left(\sin x\right)\)
    \(=\) \(\frac{1}{2}\left[-\int\limits^{\frac{\pi}{3}}_0\frac{\text{d}\left(1-\sin x\right)}{1-\sin x}+\int\limits^{\frac{\pi}{3}}_0\frac{\text{d}\left(1+\sin x\right)}{1+\sin x}\right]\)
    \(=\frac{1}{2}\left[-\ln\left|1-\sin x\right|+\ln\left|1+\sin x\right|\right]|^{\frac{\pi}{3}}_0\)
    \(=\frac{1}{2}\ln\frac{1+\sin x}{1-\sin x}|^{\frac{\pi}{3}}_0\)
    Vậy: \(\int\limits^{\frac{\pi}{3}}_0\frac{x\sin x}{\cos^2x}dx=\frac{x}{\cos x}|^{\frac{\pi}{3}}_0-\frac{1}{2}\ln\frac{1+\sin x}{1-\sin x}|^{\frac{\pi}{3}}_0\)
    \(=\frac{\frac{\pi}{3}}{\frac{1}{2}}-\frac{1}{2}\ln\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\)
    \(=\frac{2\pi}{3}-\frac{1}{2}\ln3\)
    Vậy \(\int\limits^{\frac{\pi}{3}}_0\frac{x\sin x}{\cos^2x}dx=\frac{2\pi}{3}-ln\left(2-\sqrt{3}\right)\) là khẳng định sai.
     
  2. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Tính \(I=\int\limits^{ln3}_0\frac{3e^{2x+1}-2}{e^x}\text{d}x\) .
    • \(I=6e-\frac{4}{3}\)
    • \(I=4e+\frac{3}{4}\)
    • \(I=6e+\frac{4}{3}\)
    • \(I=5e-\frac{4}{3}\)
    Hướng dẫn giải:

    \(I=\int\limits^{ln3}_0\frac{3e^{2x+1}-2}{e^x}\text{d}x\)
    \(=\int\limits^{ln3}_0\left(3.e^{x+1}-2.e^{-x}\right)\text{d}x\)
    \(=3\int\limits^{ln3}_0e^{x+1}\text{d}\left(x+1\right)+2\int\limits^{\ln3}_0e^{-x}\text{d}\left(-x\right)\)
    \(=\left[3e^{x+1}+2.e^{-x}\right]|^{\ln3}_0\)
    \(=\left[3e^{\ln3+1}+2.e^{-\ln3}-3e-2\right]\)
    \(=3e^{\ln3}.e+\frac{2}{e^{\ln3}}-3e-2\)
    \(=3.3.e+\frac{2}{3}-3e-2\)
    \(=6e-\frac{4}{3}\)
    Chọn A.
     
  3. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Tính \(I=\int\limits^{ln2}_0\frac{e^{3x}+1}{e^x+1}dx\)
    • \(I=\frac{1}{2}+ln2\)
    • \(I=\frac{1}{2}-3ln2\)
    • \(I=\frac{1}{2}+2ln2\)
    • \(I=-\frac{1}{2}-ln2\)
    Hướng dẫn giải:

    \(I=\int\limits^{ln2}_0\frac{e^{3x}+1}{e^x+1}dx\)
    \(=\int\limits^{\ln2}_0\frac{\left(e^x\right)^3+1}{e^x+1}\text{d}x\)
    \(=\int\limits^{\ln2}_0\frac{\left(e^x+1\right)\left(x^{2x}-e^x+1\right)}{e^x+1}\text{d}x\)
    \(=\int\limits^{\ln2}_0\left(e^{2x}-e^x+1\right)\text{d}x\)
    \(=\frac{1}{2}\int\limits^{\ln2}_0e^{2x}\text{d}\left(2x\right)-\int\limits^{\ln2}_0e^x\text{d}x+\int\limits^{\ln2}_0\text{d}x\)
    \(=\left(\frac{1}{2}e^{2x}-e^x+x\right)|^{\ln2}_0\)
    \(=\frac{1}{2}e^{2\ln2}-e^{\ln2}+\ln2-\frac{1}{2}+1-0\)
    \(=\frac{1}{2}e^{\ln2^2}-2+\ln2-\frac{1}{2}+1\)
    \(=\frac{1}{2}.2^2-2+\ln2-\frac{1}{2}+1\)
    \(=\frac{1}{2}+\ln2\)
    Chọn A.
     
  4. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Tính \(I=\int\limits^e_0\frac{1}{\sqrt{x+1}+\sqrt{x}}dx\)
    • \(I=\frac{1}{\sqrt{e+1}+\sqrt{x}}-2\)
    • \(I=2\left(\frac{1}{\sqrt{e+1}+\sqrt{x}}-1\right)\)
    • \(I=\frac{2}{3}\left(\left(e+1\right)\sqrt{e+1}-e\sqrt{e}-1\right)\)
    • \(I=\frac{2}{3}\left(\left(e+1\right)\sqrt{e+1}-e\sqrt{e}+1\right)\)
    Hướng dẫn giải:

    \(I=\int\limits^e_0\frac{1}{\sqrt{x+1}+\sqrt{x}}dx\)
    \(=\int\limits^e_0\frac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x+1}+\sqrt{x}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}\text{d}x\)
    \(=\int\limits^e_0\left(\sqrt{x+1}-\sqrt{x}\right)\text{d}x\)
    \(=\int\limits^e_0\left[\left(x+1\right)^{\frac{1}{2}}-x^{\frac{1}{2}}\right]\text{d}x\)
    \(=\int\limits^e_0\left(x+1\right)^{\frac{1}{2}}\text{d}\left(x+1\right)-\int\limits^e_0x^{\frac{1}{2}}\text{d}x\)
    \(=\left[\frac{1}{1+\frac{1}{2}}\left(x+1\right)^{1+\frac{1}{2}}-\frac{1}{1+\frac{1}{2}}x^{1+\frac{1}{2}}\right]|^e_0\)
    \(=\left[\frac{2}{3}\left(x+1\right)^{\frac{3}{2}}-\frac{2}{3}x^{\frac{3}{2}}\right]|^e_0\)
    \(=\frac{2}{3}\left[\left(e+1\right)\sqrt{e+1}-e\sqrt{e}-1\right]\)
    Chọn C.
     
  5. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Giải phương trình ẩn a sau đây : \(\int\limits^a_0\cos xdx=0\)
    • \(a=\frac{\pi}{3}\)
    • \(a=\frac{\pi}{3}+k2\pi,k\in\mathbb{Z}\)
    • \(a=\frac{\pi}{6}+k2\pi,k\in\mathbb{Z}\)
    • \(a=k\pi,k\in\mathbb{Z}\)
    Hướng dẫn giải:

    \(\int\limits^a_0\cos xdx=0\)
    \(\Leftrightarrow\sin x|^a_0=0\)
    \(\Leftrightarrow\sin a-\sin0=0\)
    \(\Leftrightarrow\sin a=0\)
    \(\Leftrightarrow a=k\pi,k\in\mathbb{Z}\)
    Chọn D.
     
  6. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Biết \(\int\limits^{\frac{\pi}{2}}_0\left(e^{\sin x}+\cos x\right)\cos xdx=e-1+a\). Trong các khẳng định sau, khẳng định nào sai ?
    • \(\sin\left(\frac{3\pi}{4}+a-\alpha\right)=-\sin\alpha,\forall\alpha\)
    • \(\cos\left(\frac{3\pi}{4}+a-\alpha\right)=-\cos\alpha,\forall\alpha\)
    • \(\tan\left(\frac{3\pi}{4}+a-\alpha\right)=-\tan\alpha,\forall\alpha\)
    • \(\cot\left(\frac{3\pi}{4}+a-\alpha\right)=-\cot\alpha,\forall\alpha\)
    Hướng dẫn giải:

    \(\int\limits^{\frac{\pi}{2}}_0\left(e^{\sin x}+\cos x\right)\cos xdx=\int\limits^{\frac{\pi}{2}}_0e^{\sin x}\cos x\text{d}x+\int\limits^{\frac{\pi}{2}}_0\cos^2x\text{d}x\)
    \(=\int\limits^{\frac{\pi}{2}}_0e^{\sin x}d\left(\sin x\right)+\int\limits^{\frac{\pi}{2}}_0\frac{1+\cos2x}{2}\text{d}x\)
    \(=e^{\sin x}|^{\frac{\pi}{2}}_0+\frac{1}{2}x|^{\frac{\pi}{2}}_0+\frac{1}{4}\int\limits^{\frac{\pi}{2}}_0\cos2x\text{d}\left(2x\right)\)
    \(=\left(e^{\sin x}+\frac{1}{2}x+\frac{1}{4}\sin2x\right)|^{\frac{\pi}{2}}_0\)
    \(=e+\frac{\pi}{4}-1\)
    Suy ra \(e+\frac{\pi}{4}-1=e-1+a\)
    \(\Rightarrow a=\frac{\pi}{4}\)
    Vậy: \(\frac{3\pi}{4}+a=\frac{3\pi}{4}+\frac{\pi}{4}=\pi\)
    Góc \(\frac{3\pi}{4}+a-\alpha\) và góc \(\alpha\) là hai góc bù nhau. Suy ra phát biểu \(\sin\left(\frac{3\pi}{4}+a-\alpha\right)=-\sin\alpha,\forall\alpha\) là sai. Chọn A.
     
  7. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Tính \(\int\limits^{\frac{\pi}{4}}_0\frac{a-2a\sin^2x}{1+\sin2x}\text{d}x\) trong đó \(a\) là một số đã cho :
    • \(\int\limits^{\frac{\pi}{4}}_0\frac{a-2a\sin^2x}{1+\sin2x}dx=2a-a\sqrt{2}\)
    • \(\int\limits^{\frac{\pi}{4}}_0\frac{a-2a\sin^2x}{1+\sin2x}dx=\frac{a\sqrt{2}}{2}-1\)
    • \(\int\limits^{\frac{\pi}{4}}_0\frac{a-2a\sin^2x}{1+\sin2x}dx=ln\sqrt{2^a}\)
    • \(\int\limits^{\frac{\pi}{4}}_0\frac{a-2a\sin^2x}{1+\sin2x}dx=\frac{1}{2}lna\)
    Hướng dẫn giải:

    \(\int\limits^{\frac{\pi}{4}}_0\frac{a-2a\sin^2x}{1+\sin2x}\text{d}x=a\int\limits^{\frac{\pi}{4}}_0\frac{1-2\sin^2x}{1+\sin2x}\text{d}x\)
    \(=a\int\limits^{\frac{\pi}{4}}_0\frac{\cos2x}{1+\sin2x}\text{d}x\)
    \(=\frac{a}{2}\int\limits^{\frac{\pi}{4}}_0\frac{\text{d}\left(1+\sin2x\right)}{1+\sin2x}\)
    \(=\frac{a}{2}\ln\left|1+\sin2x\right||^{\frac{\pi}{4}}_0\)
    \(=\frac{a}{2}\ln2\)
    \(=\ln\sqrt{2^a}\)
    Chọn C.
     
  8. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Tính tích phân \(\int\limits^{\frac{\pi}{2}}_0\left(1-\cos x\right)^n\sin xdx\) :
    • \(\int\limits^{\frac{\pi}{2}}_0\left(1-\cos x\right)^n\sin xdx=\frac{1}{2n}\)
    • \(\int\limits^{\frac{\pi}{2}}_0\left(1-\cos x\right)^n\sin xdx=\frac{1}{n+1}\)
    • \(\int\limits^{\frac{\pi}{2}}_0\left(1-\cos x\right)^n\sin xdx=\frac{1}{n-1}\)
    • \(\int\limits^{\frac{\pi}{2}}_0\left(1-\cos x\right)^n\sin xdx=\frac{1}{2n-1}\)
    Hướng dẫn giải:

    \(\int\limits^{\frac{\pi}{2}}_0\left(1-\cos x\right)^n\sin xdx=\int\limits^{\frac{\pi}{2}}_0\left(1-\cos x\right)^n\text{d}\left(1-\cos x\right)\)
    \(=\frac{\left(1-\cos x\right)^{n+1}}{n+1}|^{\frac{\pi}{2}}_0\)
    \(=\frac{1}{n+1}\)
    Chọn B.
     
  9. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Trong các giá trị sau của n cho sau đây, tìm n để \(\int\limits^{\dfrac{\pi}{3}}_0\cos^nx\sin xdx=\dfrac{15}{64}\)
    • \(n=1\)
    • \(n=2\)
    • \(n=3\)
    • \(n=4\)
    Hướng dẫn giải:

    \(\int\limits^{\frac{\pi}{3}}_0\cos^nx\sin xdx=-\int\limits^{\frac{\pi}{3}}_0\cos^nx\text{d}\left(\cos x\right)\)
    \(=-\frac{\cos^{n+1}x}{n+1}|^{\frac{\pi}{3}}_0=-\left(\frac{\left(\frac{1}{2}\right)^{n+1}}{n+1}-\frac{1}{n+1}\right)\)
    \(=\frac{1}{n+1}-\frac{1}{2^{n+1}\left(n+1\right)}=\frac{2^{n+1}-1}{2^{n+1}\left(n+1\right)}\)
    Theo yêu cầu ta có:
    \(\frac{2^{n+1}-1}{2^{n+1}\left(n+1\right)}=\frac{15}{64}\)
    => n = 3. Chọn C.
     
  10. Tác giả: LTTK CTV
    Đánh giá: ✪ ✪ ✪ ✪ ✪
    Biết \(\int\limits^1_0\frac{\left(3x-1\right)dx}{x^2+6x+9}=3ln\frac{a}{b}-\frac{5}{6}\), trong đó a, b nguyên dương và \(\frac{a}{b}\) là phân số tối giản
    Hãy tính tích ab .
    • \(ab=-5\)
    • \(ab=12\)
    • \(ab=6\)
    • \(ab=\frac{5}{4}\)
    Hướng dẫn giải:

    \(\frac{3x-1}{x^2+6x+9}=3.\frac{x-\frac{1}{3}}{\left(x+3\right)^2}=3.\left[\frac{x+3-\frac{10}{3}}{\left(x+3\right)^2}\right]\)
    \(=\frac{3}{x+3}-\frac{10}{\left(x+3\right)^2}\)
    Vậy \(\int\limits^1_0\frac{\left(3x-1\right)dx}{x^2+6x+9}=\int\limits^1_0\frac{3}{x+3}\text{d}x-\int\limits^1_0\frac{10}{\left(x+3\right)^2}\text{d}x\)
    \(=3.\ln\left(x+3\right)|^1_0-10.\frac{1}{-2+1}.\left(x+3\right)^{-2+1}|^1_0\)
    \(=\left[3\ln\left(x+3\right)+\frac{10}{\left(x+3\right)}\right]|^1_0\)
    \(=3\left(\ln4-\ln3\right)+10\left(\frac{1}{4}-\frac{1}{3}\right)\)
    \(=3\ln\frac{4}{3}-\frac{5}{6}\)
    Suy ra \(a=4;b=3\) . Từ đó \(ab=12\). Vậy chọn B.